×

Numerical solution of general Emden-Fowler equation using Haar wavelet collocation method. (English) Zbl 07727814

Summary: This paper deals with the numerical solution of the general Emden-Fowler equation using the Haar wavelet collocation method. This method transforms the differential equation into a system of nonlinear equations. These equations are further solved by Newton’s method to obtain the Haar coefficients, and finally the solution to the problem is acquired using these coefficients. We have taken many examples of fifth- and sixth-order equations and implemented our method on those examples. The graphs show the efficiency of the solution for resolution \(L=3\) and the maximum absolute error of our approach. The error tables give a good picture of the accuracy of this approach.

MSC:

65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
65T60 Numerical methods for wavelets
Full Text: DOI

References:

[1] Arbabi, S.; Nazari, A.; Darvishi, M. T., A two-dimensional haar wavelets method for solving systems of PDEs, Appl. Math. Comput., 292, 33-46 (2017) · Zbl 1410.65391
[2] Aziz, I.; Amin, R., Numerical solution of a class of delay differential and delay partial differential equations via haar wavelet, Appl. Math. Model., 40, 23-24, 10286-10299 (2016) · Zbl 1443.65089
[3] Aziz, I.; Nisar, M., An efficient numerical algorithm based on haar wavelet for solving a class of linear and nonlinear nonlocal boundary-value problems, Calcolo, 53, 621-633 (2016) · Zbl 1376.65108
[4] Aziz, I.; Siraj-ul-Islam; Šarler, B., Wavelets collocation methods for the numerical solution of elliptic bv problems, Appl. Math. Model., 37, 3, 676-694 (2013) · Zbl 1352.65661
[5] Berwal, N.; Panchal, D.; Parihar, C. L., Haar wavelet method for numerical solution of telegraph equations, Ital. J. Pure Appl. Math., 30, 317-328 (2013) · Zbl 1330.65212
[6] Braun, M.; Golubitsky, M., Differential Equations and Their Applications, Vol. 2 (1983), Springer, Newyork · Zbl 0528.34002
[7] Chandrasekhar, S., An Introduction to the Study of Stellar Structure (1957), Dover publications Inc.: Dover publications Inc., New York, NY · Zbl 0079.23901
[8] Chandrasekhar, S., Principles of Stellar Dynamics (2005), Dover Publications Inc., Newyork · Zbl 0060.46307
[9] Chen, C. F.; Hsiao, C. H., Haar wavelet method for solving lumped and distributed-parameter systems, IEE Proc. Control Theory Appl., 144, 1, 87-94 (1997) · Zbl 0880.93014
[10] Chi, J.; Alahmadi, D., Badminton players’ trajectory under numerical calculation method, Appl. Math. Nonlinear Sci. (2021) · doi:10.2478/amns.2021.1.00125
[11] Chowdhury, M. S. H.; Hashim, I., Solutions of emden-fowler equations by homotopy-perturbation method, Nonlinear Anal. Real World Appl., 10, 1, 104-115 (2009) · Zbl 1154.34306
[12] Chui, C. K., An Introduction to Wavelets, Vol. 1 (1992), Academic press: Academic press, London · Zbl 0925.42016
[13] Conti, R., Graffi, D., and Sansone, G., The italian contribution to the theory of nonlinear ordinary differential equations and to nonlinear mechanics during the years 1951-1961. Tech. Rep. Stevens Inst of Tech Hoboken NJ, 1943. · Zbl 0125.05102
[14] Das, N.; Singh, R.; Wazwaz, A.-M.; Kumar, J., An algorithm based on the variational iteration technique for the bratu-type and the lane-emden problems, J. Math. Chem., 54, 527-551 (2016) · Zbl 1349.65238
[15] Dehghan, M.; Lakestani, M., Numerical solution of nonlinear system of second-order boundary value problems using cubic b-spline scaling functions, Int. J. Comput. Math., 85, 9, 1455-1461 (2008) · Zbl 1149.65058
[16] Díaz, L. A.; Martín, M. T.; Vampa, V., Daubechies wavelet beam and plate finite elements, Finite Elem. Anal. Des., 45, 3, 200-209 (2009)
[17] Emden, R., Gaskugeln: Anwendungen Der Mechanischen Wärmetheorie Auf Kosmologische Und Meteorologische Probleme (1907), B. Teubner.: B. Teubner., Berlin · JFM 38.0952.02
[18] Fowler, R. H., The form near infinity of real, continuous solutions of a certain differential equation of the second order, Quart. J. Math., 45, 1914, 289-350 (1914) · JFM 45.0479.01
[19] Fowler, R. H., Further studies of emden’s and similar differential equations, Quart. J. Math., os-2, 1, 259-288 (1931) · Zbl 0003.23502
[20] Guf, J.-S.; Jiang, W.-S., The haar wavelets operational matrix of integration, Int. J. Syst. Sci., 27, 7, 623-628 (1996) · Zbl 0875.93116
[21] Haar, A., Zur Theorie Der Orthogonalen Funktionensysteme (1909), Georg-August-Universitat: Georg-August-Universitat, Gottingen · JFM 40.0475.08
[22] Hariharan, G.; Kannan, K.; Sharma, K. R., Haar wavelet method for solving fisher’s equation, Appl. Math. Comput., 211, 2, 284-292 (2009) · Zbl 1162.65394
[23] Horedt, G. P., Approximate analytical solutions of the lane-emden equation in n-dimensional space, Astron. Astrophys., 172, 359-367 (1987) · Zbl 0609.76082
[24] Jang, G.-W.; Kim, Y. Y.; Choi, K. K., Remesh-free shape optimization using the wavelet-galerkin method, Int. J. Solids. Struct., 41, 22-23, 6465-6483 (2004) · Zbl 1179.74099
[25] Lane, H. J., On the theoretical temperature of the sun, under the hypothesis of a gaseous mass maintaining its volume by its internal heat, and depending on the laws of gases as known to terrestrial experiment, Am. J. Sci., 2, 148, 57-74 (1870)
[26] Lepik, U., Haar wavelet method for solving higher order differential equations, Int. J. Math. Comput., 1, 8, 84-94 (2008)
[27] Meyer, Y., Wavelets and Operators, Vol. 1 (1992), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 0776.42019
[28] Mohammadi, F.; Hosseini, M. M., A new legendre wavelet operational matrix of derivative and its applications in solving the singular ordinary differential equations, J. Franklin Inst., 348, 8, 1787-1796 (2011) · Zbl 1237.65079
[29] Mohammadi, F.; Hosseini, M. M.; Mohyud-Din, S. T., Legendre wavelet galerkin method for solving ordinary differential equations with non-analytic solution, Int. J. Syst. Sci., 42, 4, 579-585 (2011) · Zbl 1218.65078
[30] Nehari, Z., On a nonlinear differential equation arising in nuclear physics. In Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, Vol. 62, JSTOR, 1961, pp. 117-135. · Zbl 0124.30204
[31] Pang, L.; Zhang, C.; Dong, H.; Liu, Y., Research on lightweight injection molding (cae) and numerical simulation calculate of new energy vehicle, Appl. Math. Nonlinear Sci., 8(1) (2023)
[32] Pervaiz, N.; Aziz, I., Haar wavelet approximation for the solution of cubic nonlinear schrodinger equations, Phys. A: Stat. Mech. Appl., 545 (2020)
[33] Ray, S. S., On haar wavelet operational matrix of general order and its application for the numerical solution of fractional bagley torvik equation, Appl. Math. Comput., 218, 9, 5239-5248 (2012) · Zbl 1359.65314
[34] Sabir, Z.; Raja, M. A. Z.; Umar, M.; Shoaib, M., Design of neuro-swarming-based heuristics to solve the third-order nonlinear multi-singular emden-fowler equation, Eur. Phys. J. Plus, 135, 5, 410 (2020)
[35] Saleem, S.; Aziz, I.; Hussain, M. Z., A simple algorithm for numerical solution of nonlinear parabolic partial differential equations, Eng. Comput., 36, 1763-1775 (2020)
[36] Shah, F. A.; Abass, R.; Debnath, L., Numerical solution of fractional differential equations using haar wavelet operational matrix method, Int. J. Appl. Comput. Math., 3, 2423-2445 (2017) · Zbl 1397.65121
[37] Shawagfeh, N. T., Nonperturbative approximate solution for lane-emden equation, J. Math. Phys., 34, 9, 4364-4369 (1993) · Zbl 0780.34007
[38] Simmons, G. F., Differential Equations with Applications and Historical Notes (2016), CRC Press: CRC Press, London, Newyork · Zbl 1366.34001
[39] Singh, O. P.; Pandey, R. K.; Singh, V. K., An analytic algorithm of lane-emden type equations arising in astrophysics using modified homotopy analysis method, Comput. Phys. Commun., 180, 7, 1116-1124 (2009) · Zbl 1198.65250
[40] Singh, R.; Guleria, V.; Singh, M., Haar wavelet quasilinearization method for numerical solution of emden-fowler type equations, Math. Comput. Simul., 174, 123-133 (2020) · Zbl 1453.65196
[41] Siraj-ul-Islam; Aziz, I.; Šarler, B., The numerical solution of second-order boundary-value problems by collocation method with the haar wavelets, Math. Comput. Model., 52, 9-10, 1577-1590 (2010) · Zbl 1205.74187
[42] Siraj-ul-Islam; Šarler, B.; Aziz, I., Haar wavelet collocation method for the numerical solution of boundary layer fluid flow problems, Int. J. Therm. Sci., 50, 5, 686-697 (2011)
[43] Verma, A.; Kumar, M., Numerical solution of third-order emden-fowler type equations using artificial neural network technique, Eur. Phys. J. Plus, 135, 1-14 (2020)
[44] Wazwaz, A.-M., A new algorithm for solving differential equations of lane-emden type, Appl. Math. Comput., 118, 2-3, 287-310 (2001) · Zbl 1023.65067
[45] Wazwaz, A.-M., Adomian decomposition method for a reliable treatment of the emden-fowler equation, Appl. Math. Comput., 161, 2, 543-560 (2005) · Zbl 1061.65064
[46] Wazwaz, A.-M.; Rach, R.; Duan, J.-S., Solving new fourth-order emden-fowler-type equations by the Adomian decomposition method, Int. J. Comput. Methods Eng. Sci. Mech., 16, 2, 121-131 (2015) · Zbl 07871406
[47] Yin, X., Green building considering image processing technology combined with cfd numerical simulation, Appl. Math. Nonlinear Sci., 8(1), 1707-1718 (2022)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.