×

An evaluation algorithm for \(q\)-Bézier triangular patches formed by convex combinations. (English) Zbl 07711022

Summary: An extension to triangular domains of the univariate \(q\)-Bernstein basis functions is introduced and analysed. Some recurrence relations and properties such as partition of unity and degree elevation are proved for them. It is also proved that they form a basis for the space of polynomials of total degree less than or equal to \(n\) on a triangle. In addition, it is presented a de Casteljau type evaluation algorithm whose steps are all linear convex combinations.

MSC:

65Dxx Numerical approximation and computational geometry (primarily algorithms)
41Axx Approximations and expansions
65Fxx Numerical linear algebra

Software:

POLYNOMIAL

References:

[1] Mainar, E.; Peña, J. M., Error analysis of corner cutting algorithms, Numer. Algorithms, 22, 41-52 (1999) · Zbl 0964.65008
[2] Delgado, J.; Peña, J. M., Running relative error for the evaluation of polynomials, SIAM J. Sci. Comput., 31, 3905-3921 (2009) · Zbl 1202.65061
[3] Delgado, J.; Peña, J. M., Algorithm 960: Polynomial: An object-oriented matlab library of fast and efficient algorithms for polynomials, ACM Trans. Math. Software, 42, Article 23 pp. (2016), 19 pages · Zbl 1369.65021
[4] Goldman, R.; Simeonov, P., Two essential properties of (q, h)-Bernstein-Bézier curves, Appl. Numer. Math., 96, 82-93 (2015) · Zbl 1321.65023
[5] Goldman, R.; Simeonov, P.; Simsek, Y., Generating functions for the q-Bernstein bases, SIAM J. Discrete Math., 28, 1009-1025 (2014) · Zbl 1304.65264
[6] Lewanowicz, S.; Woźny, P., Generalized Bernstein polynomials, BIT, 44, 63-78 (2004) · Zbl 1045.41003
[7] Farouki, R. T., The Bernstein polynomial basis: a centennial retrospective, Comput. Aided Geom. Design, 29, 379-419 (2012) · Zbl 1252.65039
[8] Farin, G., (Curves and Surfaces for Computer-Aided Geometric Design. A Practical Guide. Curves and Surfaces for Computer-Aided Geometric Design. A Practical Guide, Computer Science and Scientific Computing (1997), Academic Press, Inc.: Academic Press, Inc. San Diego, CA) · Zbl 0919.68120
[9] Carnicer, J. M.; Peña, J. M., Shape preserving representations and optimality of the Bernstein basis, Adv. Comput. Math., 1, 173-196 (1993) · Zbl 0832.41013
[10] Lewanowicz, S.; Woźny, P.; Area, I.; Godoy, E., Multivariate generalized Bernstein polynomials: identities for orthogonal polynomials of two variables, Numer. Algorithms, 49, 199-220 (2008) · Zbl 1183.33021
[11] Oruç, H.; Phillips, G. M., q-Bernstein polynomials and Bézier curves, J. Comput. Appl. Math., 151, 1-12 (2003) · Zbl 1014.65015
[12] Phillips, G. M., A de Casteljau algorithm for generalized Bernstein polynomials, BIT, 36, 232-236 (1996) · Zbl 0877.65007
[13] Phillips, G. M., Bernstein polynomials based on the q-integers, Ann. Numer. Math., 4, 511-518 (1997) · Zbl 0881.41008
[14] Simeonov, P.; Zafiris, V.; Goldman, R., q-blossoming. a new approach to algorithms and identities for q-Bernstein bases and q-Bézier curves, J. Approx. Theory, 164, 77-104 (2012) · Zbl 1242.65036
[15] Delgado, J.; Peña, J. M., Accurate computations with collocation matrices of q-Bernstein polynomials, SIAM J. Matrix Anal. Appl., 36, 880-893 (2015) · Zbl 1319.65025
[16] Dişibüyük, Ç.; Oruç, H., A generalization of rational Bernstein-Bézier curves, BIT, 47, 313-323 (2007) · Zbl 1118.65010
[17] Dişibüyük, Ç.; Oruç, H., Tensor product q-Bernstein polynomials, BIT, 48, 689-700 (2008) · Zbl 1169.65011
[18] Delgado, J.; Peña, J. M., Geometric properties and algorithms for rational Bézier curves and surfaces, Mathematics, 8, 541 (2020)
[19] Marco, A.; Martínez, J.-J.; Viaña, R., Accurate bidiagonal decomposition of totally positive h-Bernstein-Vandermonde matrices and applications, Linear Algebra Appl., 579, 320-335 (2019) · Zbl 1420.65018
[20] Lamberti, P.; Lamnii, M.; Remogna, S.; Sbibih, D., \(h\)-Bernstein basis functions over a triangular domain, Comput. Aided Geom. Design, 79, Article 101849 pp. (2020), 14 pp · Zbl 1505.65072
[21] Kac, V.; Cheung, P., Quantum Calculus (2002), Universitext, Springer-Verlag: Universitext, Springer-Verlag New York · Zbl 0986.05001
[22] Lai, M.-J.; Schumaker, L., (Spline Functions on Triangulations. Spline Functions on Triangulations, Encyclopedia of Mathematics and its Applications, vol. 110 (2007), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 1185.41001
[23] Lyche, T.; Peña, J. M., Optimally stable multivariate bases, Adv. Comput. Math., 20, 149-159 (2004) · Zbl 1041.65017
[24] Delgado, J.; Peña, J. M., On the evaluation of rational triangular Bézier surfaces and the optimal stability of the basis, Adv. Comput. Math., 38, 701-721 (2013) · Zbl 1279.65021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.