×

Construction of discontinuous enrichment functions for enriched or generalized FEM’s for interface elliptic problems in 1D. (English) Zbl 07711020

Summary: We introduce an enriched unfitted finite element method to solve 1D elliptic interface problems with discontinuous solutions, including those having implicit or Robin-type interface jump conditions. We present a novel approach to construct a one-parameter family of discontinuous enrichment functions by finding an optimal order interpolating function to the discontinuous solutions. In the literature, an enrichment function is usually given beforehand, not related to the construction step of an interpolation operator. Furthermore, we recover the well-known continuous enrichment function when the parameter is set to zero. To prove its efficiency, the enriched linear and quadratic elements are applied to a multi-layer wall model for drug-eluting stents in which zero-flux jump conditions and implicit concentration interface conditions are both present.

MSC:

65Nxx Numerical methods for partial differential equations, boundary value problems
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35Jxx Elliptic equations and elliptic systems

Software:

IIMPACK

References:

[1] Wang, H.; Chen, J.; Sun, P.; Qin, F., A conforming enriched finite element method for elliptic interface problems, Appl. Numer. Math., 127, 1-17 (2018) · Zbl 1382.65420
[2] Zhang, H.; Feng, X.; Wang, K., Long time error estimates of IFE methods for the unsteady multi-layer porous wall model, Appl. Numer. Math., 156, 303-321 (2020) · Zbl 1442.65400
[3] Zhang, H.; Lin, T.; Lin, Y., Linear and quadratic immersed finite element methods for the multi-layer porous wall model for coronary drug-eluting stents, Int. J. Numer. Anal. Model., 15 (2018) · Zbl 1406.76054
[4] Ammari, H.; Garnier, J.; Kang, H.; Lim, M.; Yu, S., Generalized polarization tensors for shape description, Numer. Math., 126, 199-224 (2014) · Zbl 1284.65072
[5] Hahn, D. W.; Özisik, M. N., Heat Conduction (2012), John Wiley & Sons
[6] Kačur, J.; Van Keer, R., A nondestructive evaluation method for concrete viods: frequency differential electrical impedance scanning, SIAM J. Appl. Math., 69, 1759-1771 (2009) · Zbl 1180.35566
[7] Krutitskii, P. A., The jump problem for the Helmholtz equation and singularities at the edges, Appl. Math. Lett., 13, 71-76 (2000) · Zbl 0957.35038
[8] He, X.; Lin, T.; Lin, Y.; Zhang, X., Immersed finite element methods for parabolic equations with moving interface, Numer. Methods Partial Differential Equations, 29, 619-646 (2013) · Zbl 1266.65165
[9] Bordas, S. P.; Burman, E.; Larson, M. G.; Olshanskii, M. A., Geometrically unfitted finite element methods and applications, Lect. Notes Comput. Sci. Eng., 121, 6-8 (2017) · Zbl 1392.65006
[10] Chou, S.-H., An immersed linear finite element method with interface flux capturing recovery, Discrete Contin. Dyn. Syst. Ser. B, 17, 2343 (2012) · Zbl 1262.65168
[11] Guo, R.; Lin, T., A group of immersed finite-element spaces for elliptic interface problems, IMA J. Numer. Anal., 39, 482-511 (2019) · Zbl 1483.65184
[12] Guo, R.; Lin, T.; Zhang, X., Nonconforming immersed finite element spaces for elliptic interface problems, Comput. Math. Appl., 75, 2002-2016 (2018) · Zbl 1409.82015
[13] Jo, G.; Kwak, D. Y., Recent development of immersed FEM for elliptic and elastic interface problems, J. Korean Soc. Ind. Appl. Math., 23, 65-92 (2019) · Zbl 1434.65260
[14] Li, Z., The immersed interface method using a finite element formulation, Appl. Numer. Math., 27, 253-267 (1998) · Zbl 0936.65091
[15] Li, Z.; Ito, K., The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains (2006), SIAM · Zbl 1122.65096
[16] Li, Z.; Lin, T.; Wu, X., New cartesian grid methods for interface problems using the finite element formulation, Numer. Math., 96, 61-98 (2003) · Zbl 1055.65130
[17] Babuška, I.; Banerjee, U.; Osborn, J. E., Generalized finite element methods main ideas, results and perspective, Int. J. Comput. Methods, 1, 67-103 (2004) · Zbl 1081.65107
[18] Babuška, I.; Banerjee, U., Stable generalized finite element method (SGFEM), Comput. Methods Appl. Mech. Engrg., 201, 91-111 (2012) · Zbl 1239.74093
[19] Babuška, I.; Banerjee, U.; Kergrene, K., Strongly stable generalized finite element method: Application to interface problems, Comput. Methods Appl. Mech. Engrg., 327, 58-92 (2017) · Zbl 1439.74385
[20] Deng, Q.; Calo, V., Higher order stable generalized finite element method for the elliptic eigenvalue and source problems with an interface in 1d, J. Comput. Appl. Math., 368, Article 112558 pp. (2020) · Zbl 1433.65268
[21] Zhang, J.; Deng, Q.; Li, X., A generalized isogeometric analysis of elliptic eigenvalue and source problems with an interface, J. Comput. Appl. Math., Article 114053 pp. (2021) · Zbl 1493.65240
[22] Belytschko, T.; Black, T., Elastic crack growth in finite elements with minimal remeshing, Internat. J. Numer. Methods Engrg., 45, 601-620 (1999) · Zbl 0943.74061
[23] Fries, T.-P.; Belytschko, T., The extended/generalized finite element method: an overview of the method and its applications, Internat. J. Numer. Methods Engrg., 84, 253-304 (2010) · Zbl 1202.74169
[24] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Internat. J. Numer. Methods Engrg., 46, 131-150 (1999) · Zbl 0955.74066
[25] Ern, A.; Guermond, J.-L., Finite Elements I: Approximation and Interpolation, Vol. 72 (2021), Springer Nature
[26] Chou, S.-H., How to create 1d enrichment functions, Informal Note (2021)
[27] Attanayake, C.; Chou, S.-H., Superconvergence and flux recovery for an enriched finite element method, Int. J. Numer. Anal. Model., 18, 656-673 (2021) · Zbl 1499.65625
[28] Hansbo, A.; Hansbo, P., An unfitted finite element method, based on Nitsche method, for elliptic interface problems, Comput. Methods Appl. Mech. Engrg., 191, 5537-5552 (2002) · Zbl 1035.65125
[29] Stakgold, I.; Holst, M. J., Green’s Functions and Boundary Value Problems, Vol. 99 (2011), John Wiley & Sons · Zbl 1221.35001
[30] Pontrelli, G.; de Monte, F., A multi-layer wall model for coronary drug-eluting stents, Int. J. Heat Mass Transfer, 50, 3658-3889 (2007)
[31] Zhang, H.; Wang, K., Long-time stability and asymptotic analysis of the IFE method for the multilayer porous wall model, Numer. Methods Partial Differential Equations, 34, 419-441 (2018) · Zbl 1390.92075
[32] Attanayake, C.; Chou, S.-H.; Deng, Q., Higher order SGFEM for one-dimensional interface elliptic problems with discontinuous solutions, 1-18 (2022), arXiv:2204.07665
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.