×

A Gaussian copula joint model for longitudinal and time-to-event data with random effects. (English) Zbl 07710140

Summary: Longitudinal and survival sub-models are two building blocks for joint modelling of longitudinal and time-to-event data. Extensive research indicates separate analysis of these two processes could result in biased outputs due to their associations. Conditional independence between measurements of biomarkers and event time process given latent classes or random effects is a conventional approach for characterising the association between the two sub-models while taking the heterogeneity among the population into account. However, this assumption is difficult to validate because of the unobservable latent variables. Thus a Gaussian copula joint model with random effects is proposed to accommodate the scenarios where the conditional independence assumption is questionable. The conventional joint model assuming conditional independence is a special case of the proposed model when the association parameters in the Gaussian copula shrink to zero. Simulation studies and real data application are carried out to evaluate the performance of the proposed model with different correlation structures. In addition, personalised dynamic predictions of survival probabilities are obtained based on the proposed model and comparisons are made to the predictions obtained under the conventional joint model.

MSC:

62-08 Computational methods for problems pertaining to statistics

Software:

JM; joineR

References:

[1] Andrinopoulou, E.; Eilers, P.; Takkenberg, J.; Rizopoulos, D., Improved dynamic predictions from joint models of longitudinal and survival data with time-varying effects using P-Splines, Biometrics, 74, 685-693 (2018) · Zbl 1414.62429
[2] Baghfalaki, T.; Ganjali, M.; Verbeke, G., A shared parameter model of longitudinal measurements and survival time with heterogeneous random-effects distribution, J. Appl. Stat., 44, 2813-2836 (2017) · Zbl 1516.62136
[3] Bernhardt, P. W.; Zhang, D.; Wang, H. J., A fast EM algorithm for fitting joint models of a binary response to multiple longitudinal covariates subject to detection limits, Comput. Stat. Data Anal., 85, 37-53 (2015) · Zbl 1507.62012
[4] Cox, D. R., Regression models and life tables (with discussion), J. R. Stat. Soc., Ser. B, Stat. Methodol., 34, 187-220 (1972) · Zbl 0243.62041
[5] Dennis, J. E.; Schnabel, R. B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations (1983), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0579.65058
[6] Diggle, P. J.; Sousa, I.; Chetwynd, A. G., Joint modelling of repeated measurements and time-to-event outcomes: the fourth Armitage lecture, Stat. Med., 27, 2981-2998 (2008)
[7] Dutta, S.; Molenberghs, G.; Chakraborty, A., Joint modelling of longitudinal response and time-to-event data using conditional distributions: a Bayesian perspective, J. Appl. Stat., 49, 2228-2245 (2021) · Zbl 07562995
[8] Emura, T.; Nakatochi, M.; Murotani, K.; Rondeau, V., A joint frailty-copula model between tumour progression and death for meta-analysis, Stat. Methods Med. Res., 26, 2649-2666 (2017)
[9] Emura, T.; Nakatochi, M.; Matsui, S.; Michimae, H.; Rondeau, V., Personalized dynamic prediction of death according to tumour progression and high-dimensional genetic factors: meta-analysis with a joint model, Stat. Methods Med. Res., 27, 2842-2858 (2018)
[10] Faucett, C. L.; Thomas, D. C., Simultaneously modelling censored survival data and repeatedly measured covariates: a Gibbs sampling approach, Stat. Med., 15, 1663-1685 (1996)
[11] Ganjali, M.; Baghfalaki, T., A copula approach to joint modeling of longitudinal measurements and survival times using Monte Carlo expectation-maximization with application to AIDS studies, J. Biopharm. Stat., 25, 1077-1099 (2015)
[12] Goldman, A. I.; Carlin, B. P.; Crane, L. R.; Launer, C.; Korvick, J. A.; Deyton, L.; Abrams, D. I., Response of CD4+ and clinical consequences to treatment using ddI or ddC in patients with advanced HIV infection, J. Acquir. Immune Defic. Syndr. Human Retrovirol., 11, 161-169 (1996)
[13] Guo, X.; Carlin, B. P., Separate and joint modelling of longitudinal and event time data using standard computer packages, Am. Stat., 58, 16-24 (2004)
[14] Henderson, R.; Diggle, P.; Dobson, A., Joint modelling of longitudinal measurements and event time data, Biostatistics, 4, 465-480 (2000) · Zbl 1089.62519
[15] Hickey, G. L.; Philipson, P.; Jorgensen, A.; Kolamunnage-Dona, R., Joint modelling of time-to-event and multivariate longitudinal outcomes: recent developments and issues, BMC Med. Res. Methodol., 16, 117 (2016)
[16] Hofert, M.; Kojadinovic, I.; Machler, M.; Yan, J., Elements of Copula Modelling with R (2018), Springer International Publishing AG: Springer International Publishing AG Berlin, Germany · Zbl 1412.62004
[17] Jacqmin-Gadda, H.; Proust-Lima, C.; Taylor, J. M.; Commenges, D., Score test for conditional independence between longitudinal outcome and time to event given the classes in the joint latent class model, Biometrics, 66, 11-19 (2010) · Zbl 1187.62170
[18] Kalbfleisch, J.; Prentice, R., The Statistical Analysis of Failure Time Data (2002), Wiley: Wiley New York · Zbl 0504.62096
[19] Laird, N. M.; Ware, J. H., Random-effects models for longitudinal data, Biometrics, 38, 963-974 (1982) · Zbl 0512.62107
[20] Li, K.; Luo, S., Functional joint model for longitudinal and time-to-event data: an application to Alzheimer’s disease, Stat. Med., 36, 3560-3572 (2017)
[21] Li, K.; Luo, S., Bayesian functional joint models for multivariate longitudinal and time-to-event data, Comput. Stat. Data Anal., 129, 14-29 (2019) · Zbl 1469.62103
[22] Li, C.; Xiao, L.; Luo, S., Joint model for survival and multivariate sparse functional data with application to a study of Alzheimer’s disease, Biometrics, 78, 435-447 (2021) · Zbl 1520.62260
[23] Lin, H.; Turnbull, B. W.; McCulloch, C. E.; Slate, E. H., Latent class models for joint analysis of longitudinal biomarker and event process data: application to longitudinal prostate-specific antigen readings and prostate cancer, J. Am. Stat. Assoc., 97, 53-65 (2002) · Zbl 1073.62582
[24] Liu, Y.; Liu, L.; Zhou, J., Joint latent class model of survival and longitudinal data: an application to CPCRA study, Comput. Stat. Data Anal., 91, 40-50 (2015) · Zbl 1468.62125
[25] Malehi, A. S.; Hajizadehb, E.; Ahmadia, K. A.; Mansouric, P., Joint modelling of longitudinal biomarker and gap time between recurrent events: copula-based dependence, J. Appl. Stat., 42, 1931-1945 (2015) · Zbl 1514.62735
[26] Murray, J.; Philipson, P., A fast approximate EM algorithm for joint models of survival and multivariate longitudinal data, Comput. Stat. Data Anal., 170, Article 107438 pp. (2022) · Zbl 07512630
[27] Nelder, J. A.; Mead, R., A simplex algorithm for function minimization, Comput. J., 7, 308-313 (1965) · Zbl 0229.65053
[28] Nelsen, R. B., An Introduction to Copulas (2006), Springer Science Business Media: Springer Science Business Media New York · Zbl 1152.62030
[29] Papageorgiou, G.; Mauff, K.; Tomer, A.; Rizopoulos, D., An overview of joint modelling of time-to-event and longitudinal outcomes, Annu. Rev. Stat. Appl., 6, 223-240 (2019)
[30] Philipson, P.; Sousa, I.; Diggle, P. J.; Williamson, P.; Kolamunnage-Dona, R.; Henderson, R.; Hickey, G. L., : joint modelling of repeated measurements and time-to-event data (2017), package version 1.2.0
[31] Philipson, P.; Hickey, G. L.; Crowther, M. J.; Kolamunnage-Dona, R., Faster Monte Carlo estimation of joint models for time-to-event and multivariate longitudinal data, Comput. Stat. Data Anal., 151, Article 107010 pp. (2020) · Zbl 07345929
[32] Prentice, R. L., Covariate measurement errors and parameter estimation in a failure time regression model, Biometrika, 69, 331-342 (1982) · Zbl 0523.62083
[33] Proust-Lima, C.; Séne, M.; Taylor, J. M.G.; Jacqmin-Gadda, H., Joint latent class models for longitudinal and time-to-event data: a review, Stat. Methods Med. Res., 23, 74-90 (2014)
[34] Rizopoulos, D., JM: an R package for the joint modelling of longitudinal and time-to-event data, J. Stat. Softw., 35, 1-33 (2010)
[35] Rizopoulos, D., Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data, Biometrics, 67, 819-829 (2011) · Zbl 1226.62124
[36] Rizopoulos, D., Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive Gaussian quadrature rule, Comput. Stat. Data Anal., 56, 491-501 (2012) · Zbl 1239.62122
[37] Rizopoulos, D., Joint Models for Longitudinal and Time-to-Event Data with Applications in R (2012), Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton · Zbl 1284.62032
[38] Rizopoulos, D.; Verbeke, G.; Lesaffre, E., A two-part joint model for the analysis of survival and longitudinal binary data with excess zeros, Biometrics, 64, 611-619 (2008) · Zbl 1137.62400
[39] Rizopoulos, D.; Verbeke, G.; Molenberghs, G., Shared parameter models under random effects misspecification, Biometrika, 95, 63-74 (2008) · Zbl 1437.62592
[40] Rizopoulos, D.; Verbeke, G.; Lesaffre, E., Fully exponential Laplace approximations for the joint modelling of survival and longitudinal data, J. R. Stat. Soc., Ser. B, Stat. Methodol., 71, 637-654 (2009) · Zbl 1250.62049
[41] Song, X.; Davidian, M.; Tsiatis, A. A., A semiparametric likelihood approach to joint modelling of longitudinal and time-to-event data, Biometrics, 58, 742-753 (2002) · Zbl 1210.62132
[42] Suresh, K.; Taylor, J. M.G.; Tsodikov, A., A Gaussian copula approach for dynamic prediction of survival with a longitudinal biomarker, Biostatistics, 22, 504-521 (2021)
[43] Suresh, K.; Taylor, J. M.G.; Tsodikov, A., A copula-based approach for dynamic prediction of survival with a binary time-dependent covariate, Stat. Med., 40, 4931-4946 (2021)
[44] Verbeke, G.; Molenberghs, G., Linear Mixed Models for Longitudinal Data (2000), Springer-Verlag: Springer-Verlag New York · Zbl 0956.62055
[45] Wulfsohn, M. S.; Tsiatis, A. A., A joint model for survival and longitudinal data measured with error, Biometrics, 53, 330-339 (1997) · Zbl 0874.62140
[46] Zhang, Z.; Charalambous, C.; Foster, P., Joint modelling of longitudinal measurements and survival times via a multivariate copula approach, J. Appl. Stat. (2022)
[47] Zhuang, H.; Diao, L.; Yi, G. Y., A Bayesian nonparametric mixture model for grouping dependence structures and selecting copula functions, Econom. Stat., 22, 172-189 (2022)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.