×

Energy-conserving successive multi-stage method for the linear wave equation with forcing terms. (English) Zbl 07705898

Summary: We propose a high-order time-discretized method for a non-homogeneous linear wave equation with a forcing term. The method conserves the accumulated discrete energy with the external term. We provide detailed proofs of unique solvability and unconditional energy conservation of the proposed successive multi-stage (SMS) method. We also present reduced order conditions up to the fourth order with aid of some important algebraic identities from the features of the SMS methods. We demonstrate the accuracy and stability of the SMS methods using numerical experiments. In addition, to show the applicability of the proposed method, we extend the method to solve quasi-linear wave equations and provide numerical simulations for sine-Gordon and Boussinesq-type equations.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
65Lxx Numerical methods for ordinary differential equations
65Pxx Numerical problems in dynamical systems
Full Text: DOI

References:

[1] Chabassier, J.; Imperiale, S., Introduction and study of fourth order theta schemes for linear wave equations, J. Comput. Appl. Math., 245, 194-212 (2013) · Zbl 1262.65119
[2] Diaz, J.; Grote, M. J., Energy conserving explicit local time stepping for second-order wave equations, SIAM J. Sci. Comput., 31, 3, 1985-2014 (2009) · Zbl 1195.65131
[3] Joly, P.; Rodríguez, J., Optimized higher order time discretization of second order hyperbolic problems: construction and numerical study, J. Comput. Appl. Math., 234, 6, 1953-1961 (2010) · Zbl 1198.65092
[4] Britt, S.; Turkel, E.; Tsynkov, S., A high order compact time/space finite difference scheme for the wave equation with variable speed of sound, J. Sci. Comput., 76, 2, 777-811 (2018) · Zbl 1397.65131
[5] Jiang, C.; Wang, Y.; Gong, Y., Explicit high-order energy-preserving methods for general Hamiltonian partial differential equations, J. Comput. Appl. Math., 388, Article 113298 pp. (2021) · Zbl 1456.65090
[6] Burman, E.; Duran, O.; Ern, A., Hybrid high-order methods for the acoustic wave equation in the time domain, Commun. Appl. Math. Comput., 4, 2, 597-633 (2022) · Zbl 1499.65483
[7] Bridges, T. J.; Reich, S., Numerical methods for Hamiltonian PDEs, J. Phys. A, Math. Gen., 39, 19, 5287 (2006) · Zbl 1090.65138
[8] Brugnano, L.; Caccia, G. F.; Iavernaro, F., Energy conservation issues in the numerical solution of the semilinear wave equation, Appl. Math. Comput., 270, 842-870 (2015) · Zbl 1410.65477
[9] Sánchez, M. A.; Ciuca, C.; Nguyen, N. C.; Peraire, J.; Cockburn, B., Symplectic Hamiltonian HDG methods for wave propagation phenomena, J. Comput. Phys., 350, 951-973 (2017) · Zbl 1380.65421
[10] Celledoni, E.; Grimm, V.; McLachlan, R. I.; McLaren, D.; O’Neale, D.; Owren, B.; Quispel, G., Preserving energy resp. dissipation in numerical PDEs using the “Average Vector Field” method, J. Comput. Phys., 231, 20, 6770-6789 (2012) · Zbl 1284.65184
[11] Quispel, G.; McLaren, D. I., A new class of energy-preserving numerical integration methods, J. Phys. A, Math. Theor., 41, 4, Article 045206 pp. (2008) · Zbl 1132.65065
[12] Li, H.; Wang, Y.; Qin, M., A sixth order averaged vector field method, J. Comput. Math., 479-498 (2016) · Zbl 1374.65206
[13] Furihata, D., Finite-difference schemes for nonlinear wave equation that inherit energy conservation property, J. Comput. Appl. Math., 134, 1-2, 37-57 (2001) · Zbl 0989.65099
[14] Matsuo, T.; Furihata, D., Dissipative or conservative finite-difference schemes for complex-valued nonlinear partial differential equations, J. Comput. Phys., 171, 2, 425-447 (2001) · Zbl 0993.65098
[15] Brugnano, L.; Iavernaro, F.; Trigiante, D., Hamiltonian boundary value methods (energy preserving discrete line integral methods), J. Numer. Anal. Ind. Appl. Math., 5, 1-2, 17-37 (2010) · Zbl 1432.65182
[16] Shin, J.; Lee, J.-Y., Energy conserving successive multi-stage method for the linear wave equation, J. Comput. Phys., 458, Article 111098 pp. (2022) · Zbl 07527724
[17] Hairer, E.; Wanner, G., Solving Ordinary Differential Equations. I, vol. 8 (1993), Springer-Verlag: Springer-Verlag Berlin · Zbl 0789.65048
[18] Hairer, E.; Wanner, G., Solving Ordinary Differential Equations. II, vol. 14 (1996), Springer-Verlag: Springer-Verlag Berlin · Zbl 0859.65067
[19] Hassan, H. N., Numerical solution of a Boussinesq type equation using Fourier spectral methods, Z. Naturforsch. A, 65, 4, 305-314 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.