×

Some reflections about the success and bibliographic impact of the dynamic geometry system GeoGebra. (English) Zbl 07702681

Summary: The authors were surprised by the number of articles that used or cited the computer algebra system DERIVE more than 10 years after it was discontinued and developed a small bibliographic study about it, published in 2019. Now they address in a similar way the very successful dynamic geometry system GeoGebra that, although created 20 years ago, later than the other great dynamic geometry systems (Cabri Geometry II, The Geometer’s Sketchpad and Cinderella), has now dozens of millions of users around the world. Not surprisingly, the cites to GeoGebra in the well known bibliographic databases Scopus, Web of Science and Google Scholar show an impressive growth.

MSC:

68W30 Symbolic computation and algebraic computation
97P40 Programming languages (educational aspects)
97P70 Computer science and society (educational aspects) (MSC2010)
68N15 Theory of programming languages
68T35 Theory of languages and software systems (knowledge-based systems, expert systems, etc.) for artificial intelligence

References:

[1] Botana, F.; Valcarce, JL, A software tool for the investigation of plane loci, Mat. Comput. Simul., 61, 2, 141-154 (2003) · Zbl 1011.68149 · doi:10.1016/S0378-4754(02)00173-8
[2] Buchberger, B., Bruno Buchberger’s PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal, J. Symb. Comput., 41, 3-4, 475-511 (2006) · Zbl 1158.01307 · doi:10.1016/j.jsc.2005.09.007
[3] Calques3D. (n.a.). http://www.calques3d.org/
[4] Chou, SC, Mechanical Geometry Theorem Proving (1988), Dordrecht: Reidel, Dordrecht · Zbl 0661.14037
[5] Cinderella.: (2019). https://cinderella.de/tiki-index.php
[6] Clarivate. : Web of Science. (n.a.). https://www.webofscience.com/wos/alldb/basic-search
[7] GeoGebra. (n.a.). In Wikipedia. https://es.wikipedia.org/wiki/GeoGebra#: :text=Es
[8] Google Académico. (n.a.). https://scholar.google.es/
[9] GXWeb / Geometry Expressions. (n.a.). https://geometryexpressions.com/
[10] Hohenwarter, M.; Preiner, J., Dynamic mathematics with GeoGebra, J. Online Math. Appl. (JOMA), 7, 1448 (2007)
[11] Hohenwarter, M.: GeoGebra - ein Softwaresystem für dynamische Geometrie und Algebra der Ebene (Master’s thesis). University of Salzburg, (2002)
[12] Hohenwarter, M.: GeoGebra - didaktische Materialien und Anwendungen für den Mathematikunterricht (PhD thesis). University of Salzburg, (2006)
[13] Kortenkamp, U.: Foundations of dynamic geometry (PhD. Thesis). Swiss Fed. Inst. Tech. Zurich, (1999)
[14] Kovács, Z.; Recio, T.; Vélez, P., Reasoning about linkages with dynamic geometry, J. Symb. Comput., 97, 16-30 (2020) · Zbl 1440.68341 · doi:10.1016/j.jsc.2018.12.003
[15] Kovács, Z.; Recio, T.; Vélez, MP, Automated reasoning tools in GeoGebra Discovery, ACM Commun. Comput. Algebra, 55, 2, 39-43 (2021) · Zbl 07581915 · doi:10.1145/3493492.3493495
[16] Kutzler, B.; Stifter, S., On the application of Buchberger’s algorithm to automated geometry theorem proving, J. Symb. Comput., 2, 4, 389-397 (1986) · Zbl 0629.68086 · doi:10.1016/S0747-7171(86)80006-2
[17] Recio, T.; Vélez, MP, Automatic discovery of theorems in elementary geometry, J. Autom. Reason., 23, 63-82 (1999) · Zbl 0941.03010 · doi:10.1023/A:1006135322108
[18] Roanes-Lozano, E.: Boosting the geometrical possibilities of dynamic geometry systems and computer algebra systems through cooperation. In: M. Borovcnik, H. Kautschitsch (Eds.), Technology in Mathematics Teaching. Proceedings of ICTMT-5, öbv & hpt, Schrifrenreihe Didaktik der Mathematik 25, Viena, pp. 335-348 (2002)
[19] Roanes-Lozano, E.; Galín-García, JL; Solano-Macías, C., Some reflections about the success and impact of the computer algebra system DERIVE with a 10-year time perspective, Math. Comput. Sci., 13, 417-431 (2019) · Zbl 1493.68403 · doi:10.1007/s11786-019-00404-9
[20] Roanes-Lozano, E.; Roanes-Macías, E.; Villar-Mena, M., A bridge between dynamic geometry and computer algebra, Math. Comp. Mod., 37, 9-10, 1005-1028 (2003) · Zbl 1073.68899 · doi:10.1016/S0895-7177(03)00115-8
[21] Roanes-Lozano, E.; van Labeke, N.; Roanes-Macías, E., Connecting the 3D DGS Calques3D with the CAS Maple, Math. Comput. Simul., 80, 6, 1153-1176 (2010) · Zbl 1207.68450 · doi:10.1016/j.matcom.2009.09.008
[22] Roanes-Macías, E., Roanes-Lozano, E.: Nuevas Tecnologías en Geometría. Editorial Complutense, Madrid (1994)
[23] Roanes-Macías, E., Roanes-Lozano, E.: Automatic determination of geometric Loci. 3D-extension of Simson-Steiner theorem. In: Campbell, J.A., Roanes-Lozano, E. (eds) Artificial Intelligence and Symbolic Computation. AISC 2000. Lecture Notes in Computer Science, vol 1930. Springer, Berlin, Heidelberg, 2001, pp. 157-173 (2001). doi:10.1007/3-540-44990-6_12 · Zbl 1042.68129
[24] Roanes-Macías, E.; Roanes-Lozano, E., 3D-extension of Steiner chains problem, Math. Comput. Model., 45, 137-148 (2007) · Zbl 1134.65328 · doi:10.1016/j.mcm.2006.04.012
[25] Roanes-Macías, E.; Roanes-Lozano, E.; Fernández-Biarge, J., Obtaining a 3D extension of Pascal theorem for non-degenerated quadrics and its complete configuration with the aid of a computer algebra system, RACSAM Rev. R. Acad. A, 103, 1, 93-109 (2009) · Zbl 1179.51001 · doi:10.1007/BF03191837
[26] Roanes Macías, E., Roanes Lozano, E.: Recreando con GeoGebra el cálculo del volumen de la esfera ideado por Arquímedes. Bol. Soc. “Puig Adam” Prof. Mat. 102, 62-72 (2016)
[27] Scopus. (n.a.). https://www.scopus.com/search/form.uri?display=basic#basic
[28] Instruments, Texas: Cabri Geometry II. Windows y MS-DOS. Texas Instruments Incorporated, Manual para Macintosh (1999)
[29] The Geometer’s Sketchpad Version 5.06. (n.a.). https://sketchpad.keycurriculum.com/ · Zbl 1239.51001
[30] Todd, P.: Geometry Expressions: a constraint based interactive symbolic geometry system. In: F. Botana, T. Recio (Eds.), Automated Deduction in Geometry, 6th International Workshop, ADG 2006, Springer-Verlag Lecture Notes in Artificial Intelligence 4689, Berlin, Heidelberg, New York, pp. 189-202 , (2007). doi:10.1007/978-3-540-77356-6_12 · Zbl 1195.68116
[31] van Labeke, N.: Calques 3D: a microworld for spatial geometry learning. ITS’98 - System Demonstrations, San Antonio (Texas), August 16-19. (1998) . Available from: http://www.calques3d.org/docs/its98-demo.pdf
[32] Wu, W.-T.: On the decision problem and the mechanization of theorem-proving in elementary geometry. In: W. W. Bledsoe and D. W. Loveland (Eds.) Automated Theorem Proving. After 25 Years. Contemporary Mathematics 29, AMS, Providence, Rhode Island, pp. 213-234 (1984) · Zbl 0578.68078
[33] Wu, W.-T.: Some recent advances in mechanical theorem-proving of geometries. In: W. W. Bledsoe and D. W. Loveland (Eds.) Automated Theorem Proving. After 25 Years. Contemporary Mathematics 29, AMS, Providence, Rhode Island, pp. 235-242 (1984) · Zbl 0578.68077
[34] Wu, W.-T.: The Geometer’s Sketchpad 4 User Guide and Reference Manual. Key Curriculum, Emeryville, CA, (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.