×

Selected aspects of non orthogonal multiple access for future wireless communications. (English) Zbl 07702680

Summary: In this paper overview of recent selected works that deal with novel directions in which Non orthogonal multiple access (NOMA) research is progressing is presented. These include the cell-free NOMA, deep learning extensions and optimizations of NOMA, energy optimization and task offloading with mobile-edge computing, NOMA and physical layer security, as well as virtualization, centralized-RAN aspects. All these are hot issues towards deployments of NOMA in the designs of beyond 5G and 6th generation (6G) wireless communication networks. Even though 3rd Generation Partnership Project (3GPP) has not yet made the decision regarding which NOMA techniques should be adopted, it seems like researchers already indicate clearly that NOMA has important place in the future network deployments based on ultra-density, novel 5G use-cases (massive machine type communications, ultra-reliable low latency communications). This paper highlights the most promising directions for NOMA research. The paper is summarized with necessary steps that are required to get NOMA into practical usage.

MSC:

68M10 Network design and communication in computer systems

Software:

BranchyNet

References:

[1] 3rd Generation Partnership Project (3GPP), 2013, TR 36.888 Study on provision of low-cost Machine-Type Communications (MTC) User Equipments (UEs) based on LTE, Release 12 v(12.0.0)
[2] 3rd Generation Partnership Project (3GPP), 2020, TR 21.916 “Summary of Rel-16 Work Items”, Release 16 (v1.0.0)
[3] 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on New Radio Access Technology Physical Layer Aspects (Release 14), 3GPP TR 38.802 (2017). https://www.3gpp.org/ftp//Specs/archive/38_series/38.802/38802-e20.zip
[4] 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on Non-Orthogonal Multiple Access (NOMA) for NR (Release 16), 3GPP TR 38.812 (2018). https://www.3gpp.org/ftp//Specs/archive/38_series/38.812/38812-g00.zip
[5] Adam, ABM; Wan, X.; Wang, Z., Energy efficiency maximization for multi-cell multi-carrier NOMA networks, Sensors, 20, 22, 6642 (2020) · doi:10.3390/s20226642
[6] Ahmed, MA; Mmahmmod, KF; Azeez, MM, On the performance of non-orthogonal multiple access (NOMA) using FPGA, Int. J. Electr. Comput. Eng., 10, 2151 (2020) · doi:10.11591/ijece.v10i2.pp2151-2163
[7] AIOTI Whitepaper: IoT and Edge Computing Convergence (2020). https://aioti.eu/wp-content/uploads/2020/10/IoT-and-Edge-Computing-Published.pdf
[8] Akhtar, T. et al.: Efficient radio resource management with coalition games using NOMA in small cell networks. GLOBECOM 2020 - 2020 IEEE Global Communications Conference, pp. 1-6 (2020). doi:10.1109/GLOBECOM42002.2020.9348260
[9] Aldababsa, M.; Toka, M.; Gökceli, S.; Karabulut-Kurt, G.; Kucur, O., A tutorial on nonorthogonal multiple access for 5G and beyond, Wirel. Commun. Mobile Comput., 2018, 9713450:1-9713450:24 (2018) · doi:10.1155/2018/9713450
[10] Al-Eryani, Y.; Akrout, M.; Hossain, E., Multiple access in cell-free networks: outage performance, dynamic clustering, and deep reinforcement learning-based design, IEEE J. Sel. Areas Commun., 39, 4, 1028-1042 (2021) · doi:10.1109/JSAC.2020.3018825
[11] Altin, İ, Akar, M.: Novel OMA and hybrid NOMA schemes for MEC offloading. In: 2020 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), 2020, pp. 1-5 (2020). doi:10.1109/BlackSeaCom48709.2020.9235017
[12] Amjad, M., Musavian, L., Aïssa, S.: Link-layer rate of NOMA with finite blocklength for low-latency communications. In: IEEE 31st Annual International Symposium on Personal. Indoor and Mobile Radio Communications, London, UK, 2020, pp. 1-6 (2020). doi:10.1109/PIMRC48278.2020.9217106
[13] Asmat, H.; Din, IU; Ullah, F.; Talha, M.; Khan, M.; Guizani, M., ELC: Edge linked caching for content updating in information-centric Internet of Things, Comput. Commun., 156, 174-182 (2020) · doi:10.1016/j.comcom.2020.03.049
[14] Baidas, MW; Alsusa, E.; Shi, Y., Resource allocation for SWIPT-enabled energy-harvesting downlink/uplink clustered NOMA networks, Comput. Netw., 182 (2020) · doi:10.1016/j.comnet.2020.107471
[15] Barlacchi, G., A multi-source dataset of urban life in the city of Milan and the Province of Trentino, Sci. Data, 2 (2015) · doi:10.1038/sdata.2015.55
[16] Basnayake, V.; Jayakody, D.; Sharma, V.; Sharma, N.; Muthuchidambaranathan, P.; Mabed, H., A new green prospective of non-orthogonal multiple access (NOMA) for 5G, Information, 11, 89 (2020) · doi:10.3390/info11020089
[17] Boviz, D.: Communications multi-utilisateurs dans les réseaux d’accès radio centralisés : architecture, coordination et optimisation. Autre. Université Paris-Saclay, (2017). Français. ffNNT : 2017SACLC035ff. fftel-01591285f
[18] Boviz, D.: Communications multi-utilisateurs dans les réseaux d’accès radio centralisés: archtecture, coordination et optimisation. Autre. Université Paris-Saclay, (2017). Français. NNT: 2017SACLC035
[19] Budhiraja, I.; Tyagi, S.; Tanwar, S.; Kumar, N.; Guizani, M., Cross layer NOMA interference mitigation for femtocell users in 5G environment, IEEE Trans. Veh. Technol., 68, 5, 4721-4733 (2019) · doi:10.1109/TVT.2019.2900922
[20] Cao, X., Liu, C., Peng, M.: Energy-efficient mobile edge computing in NOMA-based wireless networks: a game theory approach. In: ICC 2020 - 2020 IEEE International Conference on Communications (ICC), pp. 1-6 (2020). doi:10.1109/ICC40277.2020.91490562
[21] Cao, S.; Chen, S.; Chen, H.; Zhang, H.; Zhan, Z.; Zhang, W., HCOME: research on hybrid computation offloading strategy for MEC based on DDPG, Electronics, 12, 3, 562 (2023) · doi:10.3390/electronics12030562
[22] Chang, Z., Energy-efficient and secure resource allocation for multiple-antenna NOMA with wireless power transfer, IEEE Trans. Green Commun. Netw., 2, 4, 1059-1071 (2018) · doi:10.1109/TGCN.2018.2851603
[23] Chen, X., Benjebbour, A., Li, A., Harada, A.: Multi-user proportional fair scheduling for uplink non-orthogonal multiple access (NOMA). In: Proceedings of the IEEE 79th Vehicular Technology Conference (VTC Spring), pp. 1-5, May 2014
[24] Cui, J., Ding, Z., Fan, P.: The application of machine learning in mmWave-NOMA systems. In: 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), pp. 1-6 (2018). doi:10.1109/VTCSpring.2018.8417523
[25] Cui, J.; Ding, Z.; Fan, P.; Al-Dhahir, N., Unsupervised machine learning-based user clustering in millimeter-wave-NOMA systems, IEEE Trans. Wirel. Commun., 17, 11, 7425-7440 (2018) · doi:10.1109/TWC.2018.2867180
[26] da Silva, MV; Souza, RD; Alves, H.; Abrão, T., A NOMA-based Q-learning random access method for machine type communications, IEEE Wirel. Commun. Lett., 9, 10, 1720-1724 (2020) · doi:10.1109/LWC.2020.3002691
[27] Dai, L.; Wang, B.; Ding, Z.; Wang, Z.; Chen, S.; Hanzo, L., A survey of non-orthogonal multiple access for 5G, IEEE Commun. Surv. Tutor., 20, 3, 2294-2323 (2018) · doi:10.1109/COMST.2018.2835558
[28] Ding, Z.; Lei, X.; Karagiannidis, GK; Schober, R.; Yuan, J.; Bhargava, VK, A survey on non-orthogonal multiple access for 5G networks: research challenges and future trends, IEEE J. Sel. Areas Commun., 35, 10, 2181-2195 (2017) · doi:10.1109/JSAC.2017.2725519
[29] Ding, Z.; Fan, P.; Poor, HV, Impact of non-orthogonal multiple access on the offloading of mobile edge computing, IEEE Trans. Commun., 67, 1, 375-390 (2019) · doi:10.1109/TCOMM.2018.2870894
[30] Dong, P.; Ning, Z.; Ma, R.; Wang, X.; Hu, X.; Hu, B., NOMA-based energy-efficient task scheduling in vehicular edge computing networks: a self-imitation learning-based approach, China Commun., 17, 11, 1-11 (2020) · doi:10.23919/JCC.2020.11.001
[31] Driouech, S.; Sabir, E.; Ghogho, M.; Amhoud, E-M, D2D mobile relaying meets NOMA-Part I: a biform game analysis, Sensors, 21, 702 (2021) · doi:10.3390/s21030702
[32] Du, J., Xue, N., Zhai, D., Cao, H., Feng, J., Lu, G.: Energy-efficient user clustering and resource management for NOMA based MEC systems. 1-6 (2020). doi:10.1109/GCWkshps50303.2020.9367499
[33] Ebrahim, A., Celik, A., Alsusa, E., Eltawil, A.M.: NOMA, OMA mode selection and resource allocation for beyond 5G networks. In: IEEE 31st Annual International Symposium on Personal. Indoor and Mobile Radio Communications, 2020, pp. 1-6 (2020). doi:10.1109/PIMRC48278.2020.9217161
[34] Emir, A.; Kara, F.; Kaya, H.; Yanikomeroglu, H., DeepMuD: multi-user detection for uplink grant-free NOMA IoT networks via deep learning, IEEE Wirel. Commun. Lett. (2021) · doi:10.1109/LWC.2021.3060772
[35] Endo, Y., Kishiyama, Y., Higuchi, K.: Uplink non-orthogonal access with MMSE-SIC in the presence of inter-cell interference. In: Proceedings of the International Symposium on Wireless Communication Systems (ISWCS), pp. 261-265, Aug. 2012
[36] Fantacci, R.; Picano, B., When network slicing meets prospect theory: a service provider revenue maximization framework, IEEE Trans. Veh. Technol., 69, 3, 3179-3189 (2020) · doi:10.1109/TVT.2019.2963462
[37] Fayaz, M., Yi, W., Liu, Y., Nallanathan, A.: Transmit power pool design for grant-free NOMA-IoT networks via deep reinforcement learning (2020)
[38] Gan, M., Jiao, J., Li, L., Wu, S., Zhang, Q.: Performance Analysis of Uplink Uncoordinated Code-Domain NOMA for SINs. In: 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP), pp. 1-6 (2018). doi:10.1109/WCSP.2018.8555942
[39] Haci, H.; Zhu, H.; Wang, J., Performance of non-orthogonal multiple access with a novel asynchronous interference cancellation technique, IEEE Trans. Commun., 65, 3, 1319-1335 (2017) · doi:10.1109/TCOMM.2016.2640307
[40] Han, S., Energy-efficient short packet communications for uplink NOMA-based massive MTC networks, IEEE Trans. Veh. Technol., 68, 12, 12066-12078 (2019) · doi:10.1109/TVT.2019.2948761
[41] Hasan, M.K., Shahjalal, M., Islam, M.M., Alam, M.M., Ahmed, M.F., Jang, Y.M.: The role of deep learning in NOMA for 5G and beyond communications. In: International Conference on Artificial Intelligence in Information and Communication (ICAIIC), 2020, pp. 303-307 (2020). doi:10.1109/ICAIIC48513.2020.9065219
[42] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 770-778 (2016)
[43] Hu, X.; Wong, K-K; Yang, K., Wireless powered cooperation-assisted mobile edge computing, IEEE Trans. Wirel. Commun., 17, 4, 2375-2388 (2018) · doi:10.1109/TWC.2018.2794345
[44] Huang, X.; Zeng, S.; Li, D.; Zhang, P.; Yan, S.; Wang, X., Fair computation efficiency scheduling in NOMA-aided mobile edge computing, IEEE Wirel. Commun. Lett., 9, 11, 1812-1816 (2020) · doi:10.1109/LWC.2020.3001994
[45] Hussien, AG; Oliva, D.; Houssein, EH; Juan, AA; Yu, X., Binary whale optimization algorithm for dimensionality reduction, Mathematics, 8, 10, 1821 (2020) · doi:10.3390/math8101821
[46] Islam, S.M.R., Ming, Z., Octavia, D., Kyung, K.: Non-orthogonal multiple access (NOMA): how it meets 5G and beyond (2019)
[47] Islam, SMR; Avazov, N.; Dobre, OA; Kwak, K-S, Power-domain non-orthogonal multiple access (NOMA) in 5G systems: potentials and challenges, IEEE Commun. Surv. Tutor., 19, 2, 721-742 (2017) · doi:10.1109/COMST.2016.2621116
[48] Islam, SMR; Avazov, N.; Dobre, OA; Kwak, K., Power-domain non-orthogonal multiple access (NOMA) in 5G systems: potentials and challenges, IEEE Commun. Surv. Tutor., 19, 2, 721-742 (2017) · doi:10.1109/COMST.2016.2621116
[49] Jaccard distance definition. https://www.statisticshowto.com/jaccard-index/
[50] Kaneko, M.; Randrianantenaina, I.; Dahrouj, H.; Elsawy, H.; Alouini, M-S, On the opportunities and challenges of NOMA-based fog radio access networks: an overview, IEEE Access, 8, 205467-205476 (2020) · doi:10.1109/ACCESS.2020.3037183
[51] Kiani, A.; Ansari, N., Edge computing aware NOMA for 5G networks, IEEE Internet Things J., 5, 2, 1299-1306 (2018) · doi:10.1109/JIOT.2018.2796542
[52] Larsen, LMP; Checko, A.; Christiansen, HL, A survey of the functional splits proposed for 5G mobile crosshaul networks, IEEE Commun. Surv. Tutor., 21, 1, 146-172 (2019) · doi:10.1109/COMST.2018.2868805
[53] Li, H., Wei, T., Ren, A., Zhu, Q., Wang, Y.: Deep reinforcement learning: Framework applications and embedded implementations: Invited paper. Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), pp. 847-854, Nov. 2017
[54] Li, Y.; Aruma Baduge, GA, NOMA-aided cell-free massive MIMO systems, IEEE Wirel. Commun. Lett., 7, 6, 950-953 (2018) · doi:10.1109/LWC.2018.2841375
[55] Li, C.; Wang, H.; Song, R., Intelligent offloading for NOMA-assisted MEC via dual connectivity, IEEE Internet Things J., 8, 4, 2802-2813 (2021) · doi:10.1109/JIOT.2020.3020542
[56] Li, Z.; Xu, M.; Nie, J.; Kang, J.; Chen, W.; Xie, S., NOMA-enabled cooperative computation offloading for blockchain-empowered internet of things: a learning approach, IEEE Internet Things J., 8, 4, 2364-2378 (2021) · doi:10.1109/JIOT.2020.3016644
[57] Liu, Y.; Wang, X.; Mei, J.; Boudreau, G.; Abou-Zeid, H.; Sediq, AB, Situation-aware resource allocation for multi-dimensional intelligent multiple access: a proactive deep learning framework, IEEE J. Sel. Areas Commun., 39, 1, 116-130 (2021) · doi:10.1109/JSAC.2020.3036969
[58] Liu, X.; Jiang, S.; Yi, W., A novel deep reinforcement learning approach for task offloading in MEC systems, Appl. Sci., 12, 21, 11260 (2022) · doi:10.3390/app122111260
[59] Lu, Y.; Cheng, P.; Chen, Z.; Mow, WH; Li, Y.; Vucetic, B., Deep multi-task learning for cooperative NOMA: system design and principles, IEEE J. Sel. Areas Commun., 39, 1, 61-78 (2021) · doi:10.1109/JSAC.2020.3036943
[60] Ma, M., Wong, V.W.S.: Joint user pairing and association for multicell NOMA: a pointer network-based approach. In: 2020 IEEE International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, pp. 1-6 (2020). doi:10.1109/ICCWorkshops49005.2020.9145383
[61] Mahmood, N.H., et al.: White paper on critical and massive machine type communication towards 6G. arXiv:2004.14146 (2020)
[62] Mahmood, N.H., et al.: White paper on critical and massive machine type communication towards 6G. arXiv:2004.14146v2 (2020)
[63] Mankar, PD; Dhillon, HS, Downlink analysis of NOMA-enabled cellular networks with 3GPP-inspired user ranking, IEEE Trans. Wirel. Commun., 19, 6, 3796-3811 (2020) · doi:10.1109/TWC.2020.2978481
[64] Maraqa, O.; Rajasekaran, AS; Al-Ahmadi, S.; Yanikomeroglu, H.; Sait, SM, A survey of rate-optimal power domain NOMA with enabling technologies of future wireless networks, IEEE Commun. Surv. Tutor., 22, 4, 2192-2235 (2020) · doi:10.1109/COMST.2020.3013514
[65] Marcano, A.S., Christiansen, H.L.: A novel method for improving the capacity in 5G mobile networks combining NOMA and OMA. In: 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), pp. 1-5 (2017). doi:10.1109/VTCSpring.2017.8108677
[66] Mutalemwa, LC; Shin, S., A classification of the enabling techniques for low latency and reliable communications in 5G and beyond: AI-enabled edge caching, IEEE Access, 8, 205502-205533 (2020) · doi:10.1109/ACCESS.2020.3037357
[67] Nduwayezu, M.; Pham, Q.; Hwang, W., Online computation offloading in NOMA-based multi-access edge computing: a deep reinforcement learning approach, IEEE Access, 8, 99098-99109 (2020) · doi:10.1109/ACCESS.2020.2997925
[68] Next Generation Internet of Things, “D3.3: A Roadmap for IoT in Europe. Research, innovation and implementation 2021-2027”, NGIoT. https://www.ngiot.eu/ngiot-report-a-roadmap-for-iot-in-europe/ (2022)
[69] Oh, J., Guo, Y., Singh, S., Lee, H.: Self-Imitation Learning. In: Proceedings of the 35th International Conference on Machine Learning, PMLR, vol. 80, pp. 3878-3887 (2018)
[70] Pan, Y.; Chen, M.; Yang, Z.; Huang, N.; Shikh-Bahaei, M., Energy-efficient NOMA-based mobile edge computing offloading, IEEE Commun. Lett., 23, 2, 310-313 (2019) · doi:10.1109/LCOMM.2018.2882846
[71] Qian, LP; Feng, A.; Huang, Y.; Wu, Y.; Ji, B.; Shi, Z., Optimal SIC ordering and computation resource allocation in MEC-aware NOMA NB-IoT networks, IEEE Internet Things J., 6, 2, 2806-2816 (2019) · doi:10.1109/JIOT.2018.2875046
[72] Rahman, A.: Network intelligentizing for future 6G wireless networks, future communication summit, Lisbon, November 2019. https://futurecomresearch.eu/previous/2019/slides/Md_Arifur_Rahman.pdf
[73] Rajput, V.S., Ashok, D.R., Chockalingam, A.: Joint NOMA transmission in indoor multi-cell VLC networks. In: IEEE 30th Annual International Symposium on Personal. Indoor and Mobile Radio Communications (PIMRC), vol. 2019, pp. 1-6 (2019). doi:10.1109/PIMRC.2019.8904250
[74] Randrianantenaina, I.; Kaneko, M.; Dahrouj, H.; ElSawy, H.; Alouini, M-S, Interference management in NOMA-based fog-radio access networks via scheduling and power allocation, IEEE Trans. Commun., 68, 8, 5056-5071 (2020) · doi:10.1109/TCOMM.2020.2988564
[75] Rezaei, F.; Tellambura, C.; Tadaion, AA; Heidarpour, AR, Rate analysis of cell-free massive MIMO-NOMA with three linear precoders, IEEE Trans. Commun., 68, 6, 3480-3494 (2020) · doi:10.1109/TCOMM.2020.2978189
[76] Rezaei, F.; Heidarpour, AR; Tellambura, C.; Tadaion, A., Underlaid spectrum sharing for cell-free massive MIMO-NOMA, IEEE Commun. Lett., 24, 4, 907-911 (2020) · doi:10.1109/LCOMM.2020.2966195
[77] Schiessl, S.; Skoglund, M.; Gross, J., NOMA in the uplink: delay analysis with imperfect CSI and finite-length coding, IEEE Trans. Wirel. Commun., 19, 6, 3879-3893 (2020) · doi:10.1109/TWC.2020.2979114
[78] Schulz, P., Latency critical IoT applications in 5G: perspective on the design of radio interface and network architecture, IEEE Commun. Mag., 55, 2, 70-78 (2017) · doi:10.1109/MCOM.2017.1600435CM
[79] Senel, K.; Cheng, HV; Björnson, E.; Larsson, EG, What role can NOMA play in massive MIMO?, IEEE J. Sel. Top. Signal Process., 13, 3, 597-611 (2019) · doi:10.1109/JSTSP.2019.2899252
[80] Shi, Z., Gao, W., Liu, J., Kato, N., Zhang, Y.: Distributed Q-learning-assisted grant-free NORA for massive machine-type communications 1-5. (2020). doi:10.1109/GLOBECOM42002.2020.9322273
[81] Shi, Z.; Gao, W.; Zhang, S.; Liu, J.; Kato, N., Machine learning-enabled cooperative spectrum sensing for non-orthogonal multiple access, IEEE Trans. Wirel. Commun., 19, 9, 5692-5702 (2020) · doi:10.1109/TWC.2020.2995594
[82] Shi, Z.; Xie, X.; Lu, H.; Yang, H.; Cai, J., Deep reinforcement learning based dynamic user access and decode order selection for uplink NOMA system with imperfect SIC, IEEE Wirel. Commun. Lett. (2020) · doi:10.1109/LWC.2020.3040402
[83] Shone, N.; Nguyen Ngoc, T.; Dinh Phai, V.; Shi, Q., A deep learning approach to network intrusion detection, IEEE Trans. Emerg. Top. Comput. Intell., 2, 1, 41-50 (2018) · doi:10.1109/TETCI.2017.2772792
[84] Stoica, R.; De Abreu, GTF; Hara, T.; Ishibashi, K., Massively concurrent non-orthogonal multiple access for 5G networks and beyond, IEEE Access, 7, 82080-82100 (2019) · doi:10.1109/ACCESS.2019.2923646
[85] Study on new radio access technology Physical layer aspects, 3GPP 38.802 (2017)
[86] Sun, Yu; He, Q., Computational offloading for MEC networks with energy harvesting: a hierarchical multi-agent reinforcement learning approach, Electronics, 12, 6, 1304 (2023) · doi:10.3390/electronics12061304
[87] Teerapittayanon, S., McDanel, B., Kung, H.-T.: BranchyNet: Fast inference via early exiting from deep neural networks. In: Proceedings of the IEEE 23rd Proceeding International Conference on Pattern Recognition (ICPR), pp. 2464-2469 (2016)
[88] Tian, L.; Yan, C.; Li, W.; Yuan, Z.; Cao, W.; Yuan, Y., On uplink non-orthogonal multiple access for 5g: opportunities and challenges, China Commun., 14, 12, 142-152 (2017) · doi:10.1109/CC.2017.8246331
[89] Tseng, S.; Chen, Y.; Tsai, C.; Tsai, W., Deep-learning-aided cross-layer resource allocation of OFDMA/NOMA video communication systems, IEEE Access, 7, 157730-157740 (2019) · doi:10.1109/ACCESS.2019.2950127
[90] Tseng, S-M; Tsai, C-S; Yu, C-Y, Outage-capacity-based cross layer resource management for downlink NOMA-OFDMA video communications: non-deep learning and deep learning approaches, IEEE Access, 8, 140097-140107 (2020) · doi:10.1109/ACCESS.2020.3004865
[91] Vaezi, M., Cellular, wide-area, and non-terrestrial IoT: a survey on 5G advances and the road toward 6G, IEEE Commun. Surv. Tutor., 24, 2, 1117-1174 (2022) · doi:10.1109/COMST.2022.3151028
[92] Wang, K., Zhou, Y., Yang, Y., Yuan, X., Luo, X.: Task offloading in NOMA-based fog computing networks: a deep Q-learning approach. In: IEEE Global Communications Conference (GLOBECOM). Waikoloa, HI, USA 2019, pp. 1-6 (2019). doi:10.1109/GLOBECOM38437.2019.9013841
[93] Wang; Huang, C-M; Yin-Fu, Self-adaptive harmony search algorithm for optimization, Expert Syst. Appl., 37, 2826-2837 (2010) · Zbl 1240.68358 · doi:10.1016/j.eswa.2009.09.008
[94] Wang, F.; Xu, J.; Wang, X.; Cui, S., Joint offloading and computing optimization in wireless powered mobile-edge computing systems, IEEE Trans. Wirel. Commun., 17, 3, 1784-1797 (2018) · doi:10.1109/TWC.2017.2785305
[95] Wei, F., Zhou, T., Xu, T., Hu, H., Tao, X.: A Joint Mechanism for Fog-Relay Networks Based on NOMA and Network Coding. 2019 IEEE Globecom Workshops (GC Wkshps), pp. 1-6 (2019). doi:10.1109/GCWkshps45667.2019.9024638
[96] Wu, W., Wang, X., Zhou, F., Wong, K., Li, C., Wang, B.: Resource Allocation for Enhancing Offloading Security in NOMA-Enabled MEC Networks. IEEE Syst. J. doi:10.1109/JSYST.2020.3009723
[97] Wysocki, T., Flizikowski, A., Marciniak, T.: Selected aspects of non-orthogonal multiple access for future wireless communications - for IoT. Sci. J. Telecommun. Electron. 24 (2020)
[98] Xiao, C., Zeng, J., Liu, B., Su, X., Wang, J.: Cross-layer power control for uplink NOMA in IoT applications with statistical delay constraints. In: IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 2018, pp. 1-7 (2018). doi:10.1109/GLOCOM.2018.8647452
[99] Yang, Y.; Marius, P., A unified successive pseudo-convex approximation framework, IEEE Trans. Signal Process. (2017) · Zbl 1415.94290 · doi:10.1109/TSP.2017.2684748
[100] Yang, Z.; Ding, Z.; Fan, P.; Al-Dhahir, N., A general power allocation scheme to guarantee quality of service in downlink and uplink NOMA systems, IEEE Trans. Wirel. Commun., 15, 11, 7244-7257 (2016) · doi:10.1109/TWC.2016.2599521
[101] Ye, N.; Li, X.; Yu, H.; Wang, A.; Liu, W.; Hou, X., Deep learning aided grant-free NOMA toward reliable low-latency access in tactile Internet of Things, IEEE Trans. Ind. Inform., 15, 5, 2995-3005 (2019) · doi:10.1109/TII.2019.2895086
[102] Ye, N.; Li, X.; Yu, H.; Zhao, L.; Liu, W.; Hou, X., DeepNOMA: a unified framework for NOMA using deep multi-task learning, IEEE Trans. Wirel. Commun., 19, 4, 2208-2225 (2020) · doi:10.1109/TWC.2019.2963185
[103] Ye, Y.; Hu, RQ; Lu, G.; Shi, L., Enhance latency-constrained computation in MEC networks using uplink NOMA, IEEE Trans. Commun., 68, 4, 2409-2425 (2020) · doi:10.1109/TCOMM.2020.2969666
[104] You, L., Yuan, D.: A Note on Decoding Order in Optimizing Multi-Cell NOMA. arXiv:1909.08651 (2019)
[105] You, X.; Wang, CX; Huang, J., Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts, Sci. China Inf. Sci., 64 (2021) · doi:10.1007/s11432-020-2955-6
[106] Zhang, Y., Wang, X., Xu, Y.: Energy-efficient resource allocation in uplink NOMA systems with deep reinforcement learning. In: 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP), Xi’an, China, pp. 1-6 (2019). doi:10.1109/WCSP.2019.8927898
[107] Zhang, N.; Wang, J.; Kang, G.; Liu, Y., Uplink nonorthogonal multiple access in 5G systems, IEEE Commun. Lett., 20, 3, 458-461 (2016) · doi:10.1109/LCOMM.2016.2521374
[108] Zhang, H.; Qiu, Y.; Chu, X.; Long, K.; Leung, VCM, Fog radio access networks: mobility management, interference mitigation, and resource optimization, IEEE Wirel. Commun., 24, 6, 120-127 (2017) · doi:10.1109/MWC.2017.1700007
[109] Zhang, H.; Qiu, Y.; Long, K.; Karagiannidis, GK; Wang, X.; Nallanathan, A., Resource allocation in NOMA-based fog radio access networks, IEEE Wirel. Commun., 25, 3, 110-115 (2018) · doi:10.1109/MWC.2018.1700326
[110] Zhang, H.; Zhang, H.; Long, K.; Karagiannidis, GK, Deep learning based radio resource management in NOMA networks: user association, subchannel and power allocation, IEEE Trans. Netw. Sci. Eng., 7, 4, 2406-2415 (2020) · doi:10.1109/TNSE.2020.3004333
[111] Zhang, J.; Tao, X.; Wu, H.; Zhang, N.; Zhang, X., Deep reinforcement learning for throughput improvement of the uplink grant-free NOMA system, IEEE Internet Things J., 7, 7, 6369-6379 (2020) · doi:10.1109/JIOT.2020.2972274
[112] Zhang, J.; Tao, X.; Wu, H.; Zhang, N.; Zhang, X., Deep reinforcement learning for throughput improvement of the uplink grant-free NOMA system, IEEE Internet Things J., 7, 7, 6369-6379 (2020) · doi:10.1109/JIOT.2020.2972274
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.