×

High-fidelity simulations for Turing pattern formation in multi-dimensional Gray-Scott reaction-diffusion system. (English) Zbl 07702352

Summary: In this study, the authors present high-fidelity numerical simulations for capturing the Turing pattern in a multi-dimensional Gray-Scott reaction-diffusion system. For this purpose, an explicit mixed modal discontinuous Galerkin (DG) scheme based on multi-dimensional structured meshes is employed. This numerical scheme deals with high-order derivatives in diffusion, and highly nonlinear functions in reaction terms. Spatial discretization is accomplished using hierarchical basis functions based on scaled Legendre polynomials. A new reaction term treatment is also detailed, showing an intrinsic property of the DG scheme and preventing incorrect solutions due to excessively nonlinear reaction terms. The system is reduced to a set of time-dependent ordinary differential equations, which are solved with an explicit third-order Total Variation Diminishing (TVD) Runge-Kutta method. The Saddle-Node, Hopf, and Turing bifurcations’ boundary conditions are also examined for the system, and subsequently, Turing space is identified. The developed numerical scheme is applied to various multidimensional Gray-Scott systems to assess its ability to capture Turing pattern formation. Several test problems, such as stationary and non-stationary waves, pulse-splitting waves, self-replicating waves, and different types of spots, are chosen from the literature to demonstrate the different Turing patterns.

MSC:

92C15 Developmental biology, pattern formation
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Turing, A. M., The chemical basis of morphogenesis, Philos. Trans. R. Soc. London Ser. B, 237, 37-72 (1952) · Zbl 1403.92034
[2] Gierer, A.; Meinhardt, H., A theory of biological pattern formation, Kybernetik, 12, 30-39 (1972) · Zbl 1434.92013
[3] Murray, J. D., On pattern formation mechanisms for lepidopteran wing patterns and mammalian coat markings, Philos. Trans. R. Soc. London B, 295, 473-496 (1981)
[4] Nijhout, H. F., A comprehensive model for color pattern formation in butterflies, Proc. R. Soc. London B, 239, 81-113 (1990)
[5] Bard, J. B.L., A model for generating aspects of zebra and other mammalian coat patterns, J. Theor. Biol., 93, 363-385 (1981)
[6] Maini, P. K.; Solursh, M., Cellular mechanisms of pattern formation in the development of limb, Int. Rev. Cytol., 129, 91-133 (1991)
[7] Meinhardt, H., The Algorithmic Beauty of Sea Shells (1995), Springer-Heidelberg: Springer-Heidelberg New York
[8] Prigogine, I.; Lefever, R., Symmetry breaking instabilities in dissipative systems. II, J. Chem. Phys., 48, 1695-1700 (1968)
[9] Schnakenberg, J., Simple chemical reaction systems with limit cycle behaviour, J. Theor. Biol., 81, 389-400 (1979)
[10] Merkin, J. H.; Needham, D. J., The development of travelling waves in a simple isothermal chemical system II. Cubic autocatalysis with quadratic and linear decay, Proc. R. Soc. Lond. A, 430, 315-345 (1990) · Zbl 0718.92029
[11] Gray, P.; Scott, S. K., Autocatalytic reactions in the isothermal, continuous stirred tank reactor: oscillations and instabilities in the system \(\text{A} + 2 \text{B} \to 3 \text{B} , \text{B} \to \text{C} \), Chem. Eng. Sci., 39, 1087-1097 (1984)
[12] Sel’Kov, E. E., Self-oscillations in glycolysis 1. A simple kinetic model, Eur. J. Biochem., 4, 1, 79-86 (1968)
[13] Vastano, J. A.; Pearson, J. E.; Horsthemke, W.; Swinney, H. L., Chemical pattern formation with equal diffusion coefficients, Phys. Lett. A, 124, 320-324 (1987)
[14] Pearson, J. E., Complex patterns in a simple system, Science, 261, 189-192 (1993)
[15] Mazin, W.; Rasmussen, K. E.; Mosekilde, E.; Borckmans, P.; Dewel, G., Pattern formation in the bistable Gray-Scott model, Math. Comput. Simul., 40, 371-396 (1996) · Zbl 0881.92038
[16] Doelman, A.; Kaper, T. J.; Zegeling, P. A., Pattern formation in the one-dimensional Gray-Scott model, Nonlinearity, 10, 523 (1997) · Zbl 0905.35044
[17] Doelman, A.; Gardner, R. A.; Kaper, T. J., Stability analysis of singular patterns in the 1DGray-Scott model: a matched asymptotics approach, Phys. D, 122, 1-36 (1998) · Zbl 0943.34039
[18] Hale, J. K.; Peletier, L. A.; Troy, W. C., Exact homoclinic and heteroclinic solutions of the Gray-Scott model for autocatalysis, SIAM J. Appl. Math., 61, 102-130 (2000) · Zbl 0965.34037
[19] Nishiura, Y.; Ueyama, D., Spatio-temporal chaos for the Gray-Scott model, Phys. D, 150, 137-162 (2001) · Zbl 0981.35022
[20] Lesmes, F.; Hochberg, D.; Morán, F.; Pérez, J. M., Noise-controlled self-replicating patterns, Phys. Rev. Lett., 91, 238301 (2003)
[21] McGough, J. S.; Riley, K., Pattern formation in the Gray-Scott model, Nonlinear Anal., 5, 105-121 (2004) · Zbl 1097.35071
[22] Munteanu, A.; Solé, R. V., Pattern formation in noisy self-replicating spots, Int. J. Bifurc. Chaos, 16, 3679-3685 (2006) · Zbl 1113.92007
[23] Kolokolnikov, T.; Ward, M. J.; Wei, J., Zigzag and breakup instabilities of stripes and rings in the two-dimensional Gray-Scott model, Stud. Appl. Math., 116, 35-95 (2006) · Zbl 1145.35388
[24] Kolokolnikov, T.; Ward, M. J.; Wei, J., Pattern formation induced by internal microscopic fluctuations, J. Phys. Chem. A, 111, 1265-1270 (2007)
[25] Kyrychko, Y. N.; Blyuss, K. B.; Hogan, S. J.; Schöll, E., Control of spatiotemporal patterns in the Gray-Scottmodel, Chaos, 19, 043126 (2009)
[26] Wang, W.; Lin, Y.; Yang, F.; Zhang, L.; Tan, Y., Numerical study of pattern formation in an extended Gray-Scott model, Commun. Nonlinear Sci. Numer. Simul., 16, 4, 2016-2026 (2011) · Zbl 1221.35456
[27] R.P. Munafo, Stable localized moving patterns in the 2-D Gray-Scott model, 2014. arXiv preprint arXiv:1501.01990
[28] Berenstein, I., Standing wave-like patterns in the Gray-Scott model, Chaos, 25, 064301 (2015)
[29] Har-Shemesh, O.; Quax, R.; Hoekstra, A. G.; Sloot, P. M.A., Information geometric analysis of phase transitions in complex patterns: the case of the Gray-Scott reaction-diffusion model, J. Stat. Mech. Theory Exp., 2016, 043301 (2016) · Zbl 1456.82735
[30] Wang, T.; Song, F.; Wang, H.; Karniadakis, G. E., Fractional Gray-Scott model: well-posedness, discretization, and simulations, Comput. Methods Appl. Mech. Eng., 347, 1030-1049 (2019) · Zbl 1440.35344
[31] Giri, A.; Kar, S., Unraveling the diverse nature of electric field induced spatial pattern formation in Gray-Scott model, J. Chem. Phys., 150, 094904 (2019)
[32] Han, C.; Wang, Y. L.; Li, Z. Y., A high-precision numerical approach to solving space fractional Gray-Scott model, Appl. Math. Lett., 125, 107759 (2022) · Zbl 1524.65653
[33] Reed, W. H.; Hill, T., Triangular Mesh Methods for the Neutron Transport Equation, Tech. report la-ur-73-479 (1973)
[34] Cockburn, B.; Shu, C. W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, Math. Comput., 52, 411-435 (1989) · Zbl 0662.65083
[35] Cockburn, B.; Hou, S.; Shu, C. W., The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case, Math. Comput., 54, 545-581 (1990) · Zbl 0695.65066
[36] Cockburn, B.; Shu, C. W., The Runge-Kutta local projection-discontinuous-Galerkin finite element method for scalar conservation laws, Math. Model. Numer. Anal., 25, 337-3613 (1991) · Zbl 0732.65094
[37] Cockburn, B.; Shu, C. W., The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35, 2440-2463 (1998) · Zbl 0927.65118
[38] Cockburn, B.; Shu, C. W., The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, J. Comput. Phys., 141, 199-224 (1998) · Zbl 0920.65059
[39] Madaule, E.; Restelli, M.; Sonnendrücker, E., Energy conserving discontinuous Galerkin spectral element method for the Vlasov-Poisson system, J. Comput. Phys., 279, 261-288 (2014) · Zbl 1354.65205
[40] Raj, L. P.; Singh, S.; Karchani, A.; Myong, R. S., A super-parallel mixed explicit discontinuous Galerkin method for the second-order Boltzmann-based constitutive models of rarefied and microscale gases, Comput. Phys., 157, 146-163 (2017) · Zbl 1390.76350
[41] Singh, S.; Battiato, M., Strongly out-of-equilibrium simulations for electron Boltzmann transport equation using explicit modal discontinuous Galerkinmethod, Int. J. Appl. Comput. Math., 6, 1-17 (2020) · Zbl 1462.35236
[42] Singh, S.; Battiato, M., An explicit modal discontinuous Galerkin method for Boltzmann transport equation under electronic nonequilibrium conditions, Comput. Phys., 224, 104972 (2021) · Zbl 1521.76365
[43] Singh, S., Numerical investigation of thermal non-equilibrium effects of diatomic and polyatomic gases on the shock-accelerated square light bubble using a mixed-type modal discontinuous Galerkin method, Int. J. Heat Mass Transf., 179, 121708 (2021)
[44] Singh, S.; Karchani, A.; Chourushi, T.; Myong, R. S., A three-dimensional modal discontinuous Galerkinmethod for second-order Boltzmann-Curtiss constitutive models of rarefied and microscale gas flows, J. Comput. Phys., 457, 111052 (2022) · Zbl 1515.76103
[45] S. Singh, M. Battiato, V. Kumar, Spatiotemporal pattern formation in nonlinear coupled reaction-diffusion systems with a mixed-type modal discontinuous Galerkin approach. arXiv preprint arXiv:2205.10755
[46] Zhu, J.; Zhang, Y. T.; Newman, S. A.; Alber, M., Application of discontinuous Galerkin methods for reaction-diffusion systems in developmental biology, J. Sci. Comput., 40, 391-418 (2009) · Zbl 1203.65194
[47] Singh, S., Mixed-type discontinuous Galerkin approach for solving the generalized Fitzhugh-Nagumo reaction-diffusion model, Int. J. Appl. Comput. Math., 7, 207 (2021) · Zbl 07489986
[48] Singh, S., Computational modeling of nonlinear reaction-diffusion Fisher-KPP equation with mixed modal discontinuous Galerkin scheme, Mathematical Modeling for Intelligent Systems: Theory, Methods, and Simulation (2022), CRC Press
[49] Singh, S., Numerical investigation of wave pattern evolution in Gray-Scott model using discontinuous Galerkin finite element method, Advances in Mathematical and Computational Modeling of Engineering Systems (2023), CRC Press
[50] Singh, S.; Torrilhon, M., On the shock-driven hydrodynamic instability in square and rectangular light gas bubbles: a comparative study from numerical simulations, Phys. Fluids, 35, 012117 (2023)
[51] Lee, K. J.; McCormick, W. D.; Qi, O.; Swinney, H. L., Pattern formation by interacting chemical fronts, Science, 261, 192-194 (1993)
[52] Wei, J.; Winter, M., Stationary multiple spots for reaction-diffusion systems, J. Math. Biol., 57, 53-89 (2008) · Zbl 1141.92007
[53] Singh, S., Development of a 3D Discontinuous Galerkin Method for The Second-Order Boltzmann-Curtiss Based hydrodynamic Models of Diatomic and Polyatomic Gases (2018), Gyeongsang National University (South Korea), Ph.D. thesis
[54] Chou, C. S.; Zhang, Y. T.; Zhao, R.; Nie, Q., Numerical methods for stiff reaction-diffusion systems, Descrete Contin. Dyn. B, 7, 515-525 (2007) · Zbl 1125.65080
[55] Mittal, R. C.; Rohila, R., Numerical simulation of reaction-diffusion systems by modified cubic B-spline differential quadrature method, Chaos, Solitons Fractals, 92, 9-19 (2016) · Zbl 1372.65285
[56] Zegeling, P. A.; Kok, H. P., Adaptive moving mesh computations for reaction-diffusion systems, J. Comput. Appl. Math., 168, 519-528 (2004) · Zbl 1052.65086
[57] Ersoy, O.; Dag, I., Numerical solutions of the reaction diffusion system by using exponential cubic B-spline collocation algorithms, Open Phys., 13, 414-427 (2015)
[58] Jiwari, R.; Tomasiello, S.; Tornabene, F., A numerical algorithm for computational modelling of coupled advection-diffusion-reaction systems, Eng. Comput., 35, 1383-1401 (2018)
[59] Jiwari, R.; Singh, S.; Kumar, A., Numerical simulation to capture the pattern formation of coupled reaction-diffusion models, Chaos, Solitons Fractals, 103, 422-439 (2017) · Zbl 1380.65317
[60] Tok, A. T.; Adar, N.; Dag, I., Wave simulations of Gray-Scott reaction-diffusion system, Math. Methods Appl. Sci., 42, 5566-5581 (2019) · Zbl 1427.65137
[61] Feketa, P.; Schaum, A.; Meurer, T., Distributed parameter state estimation for the Gray-Scott reaction-diffusion model, Systems, 9, 71 (2021)
[62] Hundsdorfer, W. H.; Verwer, J. G., Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations (2003), Springer-Verlag: Springer-Verlag Berlin · Zbl 1030.65100
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.