×

A numerical method to obtain exact confidence intervals for likelihood-based parameter estimators. (English) Zbl 07702197

Summary: We propose a numerical method for obtaining exact confidence intervals of likelihood-based parameter estimators for general multi-parameter models. Although the test inversion method provides exact confidence intervals, it is applicable only to single-parameter models. Our new method can be applied to general multi-parameter models without loss of accuracy, which is in sharp contrast to other multi-parameter extensions of the test inversion. Using Monte Carlo simulations, we show that our method is feasible and provides correct coverage probabilities in finite samples.

MSC:

62-XX Statistics
65-XX Numerical analysis

Software:

fda (R)
Full Text: DOI

References:

[1] Andrews, D. W.K., Inconsistency of the bootstrap when a parameter is on the boundary of the parameter space, Econometrica, 68, 2, 399-405 (2000) · Zbl 1015.62044
[2] Andrews, D. W.K.; Han, S., Invalidity of the bootstrap and the \(m\) out of \(n\) bootstrap for confidence interval endpoints defined by moment inequalities, Econom. J., 12, suppl_1, S172-S199 (2009) · Zbl 1182.62092
[3] Carpenter, J., Test inversion bootstrap confidence intervals, J. R. Stat. Soc. Ser. B Stat. Methodol., 61, 1, 159-172 (1999) · Zbl 0913.62032
[4] DiCiccio, T. J.; Romano, J. P., Nonparametric confidence limits by resampling methods and least favorable families, Internat. Statist. Rev., 58, 1, 59-76 (1990) · Zbl 0715.62090
[5] Eo, Y.; Morley, J., Likelihood-ratio-based confidence sets for the timing of structural breaks, Quant. Econ., 6, 2, 463-497 (2015) · Zbl 1398.62385
[6] Fisher, E.; Schweiger, R.; Rosset, S., Efficient construction of test inversion confidence intervals using quantile regression, J. Comput. Graph. Statist., 29, 1, 140-148 (2020) · Zbl 07499278
[7] Fraiman, R.; Pateiro-López, B., Functional quantiles, (Recent Advances in Functional Data Analysis and Related Topics (2011), Springer), 123-129
[8] Kabaila, P., Some properties of profile bootstrap confidence intervals, Aust. J. Stat., 35, 2, 205-214 (1993) · Zbl 0785.62028
[9] Kiviet, J. F.; Phillips, G. D., The bias of the 2SLS variance estimator, Econom. Lett., 66, 1, 7-15 (2000) · Zbl 0990.62020
[10] Klein, N.; Kneib, T., Directional bivariate quantiles: A robust approach based on the cumulative distribution function, AStA Adv. Stat. Anal., 104, 2, 225-260 (2020) · Zbl 1457.62114
[11] Kong, L.; Mizera, I., Quantile tomography: Using quantiles with multivariate data, Statist. Sinica, 22, 4, 1589-1610 (2012) · Zbl 1359.62175
[12] Lang, S., Fundamentals of Differential Geometry (1999), Springer Science+Business Media · Zbl 0932.53001
[13] Mandelkern, M., Setting confidence intervals for bounded parameters, Statist. Sci., 17, 2, 149-172 (2002) · Zbl 1013.62028
[14] O’Gorman, T. W., Reducing the width of confidence intervals for the difference between two population means by inverting adaptive tests, Stat. Methods Med. Res., 27, 5, 1422-1436 (2018)
[15] Ramsay, J. O.; Silverman, B. W., Functional Data Analysis (2005), Springer Science+Business Media · Zbl 1079.62006
[16] Robbins, H.; Monro, S., A stochastic approximation method, Ann. Math. Stat., 22, 3, 400-407 (1951) · Zbl 0054.05901
[17] Stoer, J.; Bulirsch, R., Introduction to Numerical Analysis (2002), Springer · Zbl 1004.65001
[18] Yamamoto, Y., A modified confidence set for the structural break date in linear regression models, Econometric Rev., 37, 9, 974-999 (2018) · Zbl 1491.62066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.