×

Worldsheet traversable wormholes. (English) Zbl 07701956

Summary: We construct worldsheet traversable wormholes by considering the effects of a double-trace deformation, \(\delta\mathcal{L}\sim h\partial\phi_L\partial\phi_R\), coupling the endpoints of an open string in AdS space. The operator deforming the theory is irrelevant and makes the boundaries bend inward toward the IR. This effect, reminiscent of two-dimensional dilaton gravities, renders the teleportation protocol more efficient and facilitates the transfer of information between the members of the dual Bell pair. We compare our results with those obtained with the standard double-trace deformation, \(\delta \mathcal{L}\sim h\phi_L\phi_R\), introduced by P. Gao et al. [J. High Energy Phys. 2017, No. 12, Paper No. 151, 25 p. (2017; Zbl 1383.83054)].

MSC:

83C57 Black holes
83E30 String and superstring theories in gravitational theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory

Citations:

Zbl 1383.83054

References:

[1] A. Einstein and N. Rosen, The Particle Problem in the General Theory of Relativity, Phys. Rev.48 (1935) 73 [INSPIRE]. · Zbl 0012.13401
[2] Misner, CW; Wheeler, JA, Classical physics as geometry: Gravitation, electromagnetism, unquantized charge, and mass as properties of curved empty space, Annals Phys., 2, 525 (1957) · Zbl 0078.19106 · doi:10.1016/0003-4916(57)90049-0
[3] A.R. Brown et al., Quantum Gravity in the Lab. I. Teleportation by Size and Traversable Wormholes, PRX Quantum4 (2023) 010320 [arXiv:1911.06314] [INSPIRE].
[4] S. Nezami et al., Quantum Gravity in the Lab. II. Teleportation by Size and Traversable Wormholes, PRX Quantum4 (2023) 010321 [arXiv:2102.01064] [INSPIRE].
[5] Maldacena, JM, The Large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys., 2, 231 (1998) · Zbl 0914.53047 · doi:10.4310/ATMP.1998.v2.n2.a1
[6] Maldacena, JM, Eternal black holes in anti-de Sitter, JHEP, 04, 021 (2003) · doi:10.1088/1126-6708/2003/04/021
[7] Van Raamsdonk, M., Building up spacetime with quantum entanglement, Gen. Rel. Grav., 42, 2323 (2010) · Zbl 1200.83052 · doi:10.1007/s10714-010-1034-0
[8] Maldacena, J.; Susskind, L., Cool horizons for entangled black holes, Fortsch. Phys., 61, 781 (2013) · Zbl 1338.83057 · doi:10.1002/prop.201300020
[9] K. Jensen and A. Karch, Holographic Dual of an Einstein-Podolsky-Rosen Pair has a Wormhole, Phys. Rev. Lett.111 (2013) 211602 [arXiv:1307.1132] [INSPIRE].
[10] J. Sonner, Holographic Schwinger Effect and the Geometry of Entanglement, Phys. Rev. Lett.111 (2013) 211603 [arXiv:1307.6850] [INSPIRE].
[11] M. Chernicoff, A. Güijosa and J.F. Pedraza, Holographic EPR Pairs, Wormholes and Radiation, JHEP10 (2013) 211 [arXiv:1308.3695] [INSPIRE].
[12] K. Jensen, A. Karch and B. Robinson, Holographic dual of a Hawking pair has a wormhole, Phys. Rev. D90 (2014) 064019 [arXiv:1405.2065] [INSPIRE].
[13] W. Fischler, P.H. Nguyen, J.F. Pedraza and W. Tangarife, Holographic Schwinger effect in de Sitter space, Phys. Rev. D91 (2015) 086015 [arXiv:1411.1787] [INSPIRE].
[14] Hubeny, VE; Semenoff, GW, String worldsheet for accelerating quark, JHEP, 10, 071 (2015) · Zbl 1388.83265 · doi:10.1007/JHEP10(2015)071
[15] Xiao, B-W, On the exact solution of the accelerating string in AdS(5) space, Phys. Lett. B, 665, 173 (2008) · doi:10.1016/j.physletb.2008.06.017
[16] Caceres, E.; Chernicoff, M.; Guijosa, A.; Pedraza, JF, Quantum Fluctuations and the Unruh Effect in Strongly-Coupled Conformal Field Theories, JHEP, 06, 078 (2010) · Zbl 1288.81096 · doi:10.1007/JHEP06(2010)078
[17] Atmaja, AN; de Boer, J.; Shigemori, M., Holographic Brownian Motion and Time Scales in Strongly Coupled Plasmas, Nucl. Phys. B, 880, 23 (2014) · Zbl 1284.81289 · doi:10.1016/j.nuclphysb.2013.12.018
[18] Banerjee, P.; Sathiapalan, B., Holographic Brownian Motion in 1+1 Dimensions, Nucl. Phys. B, 884, 74 (2014) · Zbl 1323.81054 · doi:10.1016/j.nuclphysb.2014.04.016
[19] Shenker, SH; Stanford, D., Stringy effects in scrambling, JHEP, 05, 132 (2015) · Zbl 1388.83500 · doi:10.1007/JHEP05(2015)132
[20] Maldacena, J.; Shenker, SH; Stanford, D., A bound on chaos, JHEP, 08, 106 (2016) · Zbl 1390.81388 · doi:10.1007/JHEP08(2016)106
[21] Gao, P.; Jafferis, DL; Wall, AC, Traversable Wormholes via a Double Trace Deformation, JHEP, 12, 151 (2017) · Zbl 1383.83054 · doi:10.1007/JHEP12(2017)151
[22] Chernicoff, M.; Garcia, JA; Guijosa, A., A Tail of a Quark in N=4 SYM, JHEP, 09, 080 (2009) · doi:10.1088/1126-6708/2009/09/080
[23] Maldacena, J.; Stanford, D.; Yang, Z., Diving into traversable wormholes, Fortsch. Phys., 65, 1700034 (2017) · doi:10.1002/prop.201700034
[24] Bak, D.; Kim, C.; Yi, S-H, Bulk view of teleportation and traversable wormholes, JHEP, 08, 140 (2018) · Zbl 1396.83026 · doi:10.1007/JHEP08(2018)140
[25] Bak, D.; Kim, C.; Yi, S-H, Transparentizing Black Holes to Eternal Traversable Wormholes, JHEP, 03, 155 (2019) · Zbl 1414.83027 · doi:10.1007/JHEP03(2019)155
[26] J. Maldacena, A. Milekhin and F. Popov, Traversable wormholes in four dimensions, arXiv:1807.04726 [INSPIRE].
[27] Ahn, B., Holographic teleportation in higher dimensions, JHEP, 07, 219 (2021) · Zbl 1468.83034 · doi:10.1007/JHEP07(2021)219
[28] B. Ahn, S.-E. Bak, V. Jahnke and K.-Y. Kim, Holographic teleportation with conservation laws: diffusion on traversable wormholes, arXiv:2206.03434 [INSPIRE].
[29] Z. Fu, B. Grado-White and D. Marolf, Traversable Asymptotically Flat Wormholes with Short Transit Times, Class. Quant. Grav.36 (2019) 245018 [arXiv:1908.03273] [INSPIRE]. · Zbl 1478.83151
[30] Al Balushi, A.; Wang, Z.; Marolf, D., Traversability of Multi-Boundary Wormholes, JHEP, 04, 083 (2021) · Zbl 1462.83024 · doi:10.1007/JHEP04(2021)083
[31] Emparan, R.; Grado-White, B.; Marolf, D.; Tomasevic, M., Multi-mouth Traversable Wormholes, JHEP, 05, 032 (2021) · Zbl 1466.81030 · doi:10.1007/JHEP05(2021)032
[32] J. Maldacena and X.-L. Qi, Eternal traversable wormhole, arXiv:1804.00491 [INSPIRE].
[33] Freivogel, B., Lessons on eternal traversable wormholes in AdS, JHEP, 07, 122 (2019) · Zbl 1418.83009 · doi:10.1007/JHEP07(2019)122
[34] Bintanja, S.; Espíndola, R.; Freivogel, B.; Nikolakopoulou, D., How to make traversable wormholes: eternal AdS_4wormholes from coupled CFT’s, JHEP, 10, 173 (2021) · Zbl 1476.83016 · doi:10.1007/JHEP10(2021)173
[35] Fallows, S.; Ross, SF, Making near-extremal wormholes traversable, JHEP, 12, 044 (2020) · Zbl 1457.83007 · doi:10.1007/JHEP12(2020)044
[36] Caceres, E.; Misobuchi, AS; Xiao, M-L, Rotating traversable wormholes in AdS, JHEP, 12, 005 (2018) · Zbl 1405.81120 · doi:10.1007/JHEP12(2018)005
[37] J. Maldacena and A. Milekhin, Humanly traversable wormholes, Phys. Rev. D103 (2021) 066007 [arXiv:2008.06618] [INSPIRE].
[38] Almheiri, A.; Mousatov, A.; Shyani, M., Escaping the interiors of pure boundary-state black holes, JHEP, 02, 024 (2023) · Zbl 1541.83034 · doi:10.1007/JHEP02(2023)024
[39] Bao, N.; Chatwin-Davies, A.; Pollack, J.; Remmen, GN, Traversable Wormholes as Quantum Channels: Exploring CFT Entanglement Structure and Channel Capacity in Holography, JHEP, 11, 071 (2018) · Zbl 1404.81215 · doi:10.1007/JHEP11(2018)071
[40] Freivogel, B.; Galante, DA; Nikolakopoulou, D.; Rotundo, A., Traversable wormholes in AdS and bounds on information transfer, JHEP, 01, 050 (2020) · Zbl 1434.81017 · doi:10.1007/JHEP01(2020)050
[41] J. Couch et al., Speed of quantum information spreading in chaotic systems, Phys. Rev. B102 (2020) 045114 [arXiv:1908.06993] [INSPIRE].
[42] Marolf, D.; McBride, S., Simple Perturbatively Traversable Wormholes from Bulk Fermions, JHEP, 11, 037 (2019) · Zbl 1429.83042 · doi:10.1007/JHEP11(2019)037
[43] Z. Fu, B. Grado-White and D. Marolf, A perturbative perspective on self-supporting wormholes, Class. Quant. Grav.36 (2019) 045006 [Erratum ibid.36 (2019) 249501] [arXiv:1807.07917] [INSPIRE]. · Zbl 1476.83082
[44] Hirano, S.; Lei, Y.; van Leuven, S., Information Transfer and Black Hole Evaporation via Traversable BTZ Wormholes, JHEP, 09, 070 (2019) · Zbl 1423.83025 · doi:10.1007/JHEP09(2019)070
[45] Freivogel, B.; Nikolakopoulou, D.; Rotundo, AF, Wormholes from Averaging over States, SciPost Phys., 14, 026 (2023) · Zbl 07901066 · doi:10.21468/SciPostPhys.14.3.026
[46] H. Geng, Non-local entanglement and fast scrambling in de-Sitter holography, Annals Phys.426 (2021) 168402 [arXiv:2005.00021] [INSPIRE]. · Zbl 1457.81092
[47] Nosaka, T.; Numasawa, T., Chaos exponents of SYK traversable wormholes, JHEP, 02, 150 (2021) · Zbl 1460.83049 · doi:10.1007/JHEP02(2021)150
[48] Levine, A.; Shahbazi-Moghaddam, A.; Soni, RM, Seeing the entanglement wedge, JHEP, 06, 134 (2021) · Zbl 1466.83068 · doi:10.1007/JHEP06(2021)134
[49] A.M. García-García, T. Nosaka, D. Rosa and J.J.M. Verbaarschot, Quantum chaos transition in a two-site Sachdev-Ye-Kitaev model dual to an eternal traversable wormhole, Phys. Rev. D100 (2019) 026002 [arXiv:1901.06031] [INSPIRE].
[50] T. Numasawa, Four coupled SYK models and nearly AdS_2gravities: phase transitions in traversable wormholes and in bra-ket wormholes, Class. Quant. Grav.39 (2022) 084001 [arXiv:2011.12962] [INSPIRE]. · Zbl 1505.83041
[51] A. Anand and P.K. Tripathy, Self-supporting wormholes with massive vector field, Phys. Rev. D102 (2020) 126016 [arXiv:2008.10920] [INSPIRE].
[52] A. Anand, Self-Supporting Wormholes in Four Dimensions with Scalar Field, arXiv:2204.08178 [INSPIRE].
[53] Kundu, A., Wormholes and holography: an introduction, Eur. Phys. J. C, 82, 447 (2022) · doi:10.1140/epjc/s10052-022-10376-z
[54] Dubovsky, S.; Flauger, R.; Gorbenko, V., Solving the Simplest Theory of Quantum Gravity, JHEP, 09, 133 (2012) · Zbl 1397.83036 · doi:10.1007/JHEP09(2012)133
[55] Murata, K., Fast scrambling in holographic Einstein-Podolsky-Rosen pair, JHEP, 11, 049 (2017) · Zbl 1383.83072 · doi:10.1007/JHEP11(2017)049
[56] J. de Boer, E. Llabrés, J.F. Pedraza and D. Vegh, Chaotic strings in AdS/CFT, Phys. Rev. Lett.120 (2018) 201604 [arXiv:1709.01052] [INSPIRE].
[57] A. Banerjee, A. Kundu and R.R. Poojary, Strings, branes, Schwarzian action and maximal chaos, Phys. Lett. B838 (2023) 137632 [arXiv:1809.02090] [INSPIRE]. · Zbl 1511.81107
[58] A. Banerjee, A. Kundu and R. Poojary, Maximal Chaos from Strings, Branes and Schwarzian Action, JHEP06 (2019) 076 [arXiv:1811.04977] [INSPIRE]. · Zbl 1416.81069
[59] Vegh, D., Celestial fields on the string and the Schwarzian action, JHEP, 07, 050 (2021) · Zbl 1468.83052 · doi:10.1007/JHEP07(2021)050
[60] A. Cavaglià, S. Negro, I.M. Szécsényi and R. Tateo, \( T\overline{T} \)-deformed 2D Quantum Field Theories, JHEP10 (2016) 112 [arXiv:1608.05534] [INSPIRE]. · Zbl 1390.81494
[61] N. Callebaut, J. Kruthoff and H. Verlinde, \( T\overline{T}\) deformed CFT as a non-critical string, JHEP04 (2020) 084 [arXiv:1910.13578] [INSPIRE].
[62] S. Chakraborty, A. Giveon and D. Kutasov, \( T\overline{T} , J\overline{T} , T\overline{J}\) and String Theory, J. Phys. A52 (2019) 384003 [arXiv:1905.00051] [INSPIRE]. · Zbl 1504.81103
[63] L. McGough, M. Mezei and H. Verlinde, Moving the CFT into the bulk with \(T\overline{T} \), JHEP04 (2018) 010 [arXiv:1611.03470] [INSPIRE]. · Zbl 1390.81529
[64] S. Dubovsky, V. Gorbenko and M. Mirbabayi, Asymptotic fragility, near AdS_2holography and \(T\overline{T} \), JHEP09 (2017) 136 [arXiv:1706.06604] [INSPIRE]. · Zbl 1382.83076
[65] P. Kraus, J. Liu and D. Marolf, Cutoff AdS_3versus the \(T\overline{T}\) deformation, JHEP07 (2018) 027 [arXiv:1801.02714] [INSPIRE].
[66] Ferko, C.; Sethi, S., Sequential Flows by Irrelevant Operators, SciPost Phys., 14, 098 (2023) · Zbl 07902441 · doi:10.21468/SciPostPhys.14.5.098
[67] Karch, A.; Katz, E., Adding flavor to AdS / CFT, JHEP, 06, 043 (2002) · doi:10.1088/1126-6708/2002/06/043
[68] Haag, R.; Hugenholtz, NM; Winnink, M., On the Equilibrium states in quantum statistical mechanics, Commun. Math. Phys., 5, 215 (1967) · Zbl 0171.47102 · doi:10.1007/BF01646342
[69] Gao, P.; Liu, H., Regenesis and quantum traversable wormholes, JHEP, 10, 048 (2019) · Zbl 1427.83081 · doi:10.1007/JHEP10(2019)048
[70] A.P. Reynolds and S.F. Ross, Butterflies with rotation and charge, Class. Quant. Grav.33 (2016) 215008 [arXiv:1604.04099] [INSPIRE]. · Zbl 1351.83037
[71] Shenker, SH; Stanford, D., Black holes and the butterfly effect, JHEP, 03, 067 (2014) · Zbl 1333.83111 · doi:10.1007/JHEP03(2014)067
[72] Drukker, N.; Fiol, B., All-genus calculation of Wilson loops using D-branes, JHEP, 02, 010 (2005) · doi:10.1088/1126-6708/2005/02/010
[73] Gomis, J.; Passerini, F., Wilson Loops as D3-Branes, JHEP, 01, 097 (2007) · doi:10.1088/1126-6708/2007/01/097
[74] B. Fiol, A. Güijosa and J.F. Pedraza, Branes from Light: Embeddings and Energetics for Symmetric k-Quarks in \(\mathcal{N} = 4\) SYM, JHEP01 (2015) 149 [arXiv:1410.0692] [INSPIRE].
[75] Haehl, FM; Streicher, A.; Zhao, Y., Six-point functions and collisions in the black hole interior, JHEP, 08, 134 (2021) · Zbl 1469.83013 · doi:10.1007/JHEP08(2021)134
[76] Arcos, M.; Fischler, W.; Pedraza, JF; Svesko, A., Membrane nucleation rates from holography, JHEP, 12, 141 (2022) · Zbl 1536.81141 · doi:10.1007/JHEP12(2022)141
[77] Randall, L.; Sundrum, R., An Alternative to compactification, Phys. Rev. Lett., 83, 4690 (1999) · Zbl 0946.81074 · doi:10.1103/PhysRevLett.83.4690
[78] L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett.83 (1999) 3370 [hep-ph/9905221] [INSPIRE]. · Zbl 0946.81063
[79] Emparan, R.; Horowitz, GT; Myers, RC, Exact description of black holes on branes, JHEP, 01, 007 (2000) · Zbl 0990.83523 · doi:10.1088/1126-6708/2000/01/007
[80] Emparan, R.; Fabbri, A.; Kaloper, N., Quantum black holes as holograms in AdS brane worlds, JHEP, 08, 043 (2002) · Zbl 1226.83031 · doi:10.1088/1126-6708/2002/08/043
[81] Emparan, R.; Frassino, AM; Way, B., Quantum BTZ black hole, JHEP, 11, 137 (2020) · Zbl 1456.83023 · doi:10.1007/JHEP11(2020)137
[82] Emparan, R., Black holes in dS_3, JHEP, 11, 073 (2022) · Zbl 1536.83058 · doi:10.1007/JHEP11(2022)073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.