×

Error estimates of EDG-HDG methods for the Stokes equations with Dirac measures. (English) Zbl 07698894

Summary: In this paper, we analyze the hybridized, embedded-hybridized and embedded discontinuous Galerkin methods for the Stokes equations with Dirac measures. The velocity, the velocity traces and the pressure traces are approximated by polynomials of degree \(k\ge 1\), and the pressure is discretized by polynomials of degree \(k-1\). An attractive property, named divergence-free, is satisfied by the discrete velocity field. Moreover, the discrete velocity fields derived by hybridized and embedded-hybridized discontinuous Galerkin methods are \(H(\mathrm{div})\)-conforming. Using duality argument and Oswald interpolation, a priori and a posteriori error estimates are obtained for the velocity in \(L^2\)-norm. In addition, a posteriori error estimates for the velocity in \(W^{1,q}\)-seminorm and the pressure in \(L^q\)-norm are also derived. Finally, numerical examples are provided to validate the theoretical analysis and show the performance of the obtained a posteriori error estimators.

MSC:

65-XX Numerical analysis
35-XX Partial differential equations
65K10 Numerical optimization and variational techniques
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Adams, RA, Sobolev Spaces (1975), Cambridge: Academic Press, Cambridge · Zbl 0314.46030
[2] Araya, R.; Behrens, E.; Rodríguez, R., A posteriori error estimates for elliptic problems with Dirac delta source terms, Numer. Math., 105, 193-216 (2006) · Zbl 1162.65401 · doi:10.1007/s00211-006-0041-2
[3] Agnelli, JP; Garau, EM; Morin, P., A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces, ESAIM: Math. Model. Numer. Anal., 48, 1557-1581 (2014) · Zbl 1305.35026 · doi:10.1051/m2an/2014010
[4] Apel, T.; Benedix, O.; Sirch, D.; Vexler, B., A priori mesh grading for an elliptic problem with Dirac right-hand side, SIAM J. Numer. Anal., 49, 992-1005 (2011) · Zbl 1229.65203 · doi:10.1137/090778018
[5] Allendes, A.; Otárola, E.; Rankin, R.; Salgado, AJ, Adaptive finite element methods for an optimal control problem involving Dirac measures, Numer. Math., 137, 159-197 (2017) · Zbl 1375.49049 · doi:10.1007/s00211-017-0867-9
[6] Allendes, A.; Otárola, E.; Salgado, AJ, A posteriori error estimates for the Stokes problem with singular sources, Comput. Methods Appl. Mech. Engrg., 345, 1007-1032 (2019) · Zbl 1440.65171 · doi:10.1016/j.cma.2018.11.004
[7] Allendes, A.; Fuica, F.; Otárola, E.; Quero, D., An adaptive FEM for the Pointwise tracking optimal control problem of the Stokes equations, SIAM J. Sci. Comput., 41, A2967-A2998 (2019) · Zbl 1427.49023 · doi:10.1137/18M1222363
[8] Babuška, I., Error bounds for the finite element method, Numer. Math., 16, 322-333 (1971) · Zbl 0214.42001 · doi:10.1007/BF02165003
[9] Brown, RM; Shen, Z., Estimates for the Stokes operator in Lipschitz domains, Indiana Univ. Math. J., 44, 1183-1206 (1995) · Zbl 0858.35098 · doi:10.1512/iumj.1995.44.2025
[10] Brenner, SC; Scott, LR, The Mathematical Theory of Finite Element Methods (2008), New York: Springer-Verlag, New York · Zbl 1135.65042 · doi:10.1007/978-0-387-75934-0
[11] Bernardi, C.; Canuto, C.; Maday, Y., Generalized inf-sup conditions for Chebyshev spectral approximation of the Stokes problem, SIAM J. Numer. Anal., 25, 1237-1271 (1988) · Zbl 0666.76055 · doi:10.1137/0725070
[12] Brett, C.; Dedner, A.; Elliott, C., Optimal control of elliptic PDEs at points, IMA J. Numer. Anal., 36, 1015-1050 (2016) · Zbl 1433.49041 · doi:10.1093/imanum/drv040
[13] Bertoluzza, S.; Decoene, A.; Lacouture, L.; Martin, S., Local error analysis for the Stokes equations with a punctual source term, Numer. Math., 140, 677-701 (2018) · Zbl 1433.65278 · doi:10.1007/s00211-018-0976-0
[14] Cockburn, B.; Gopalakrishnan, J.; Lazarov, R., Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 47, 1319-1365 (2009) · Zbl 1205.65312 · doi:10.1137/070706616
[15] Cockburn, B.; Gopalakrishnan, J., The derivation of hybridizable discontinuous Galerkin methods for Stokes flow, SIAM J. Numer. Anal., 47, 1092-1125 (2009) · Zbl 1279.76016 · doi:10.1137/080726653
[16] Cockburn, B.; Gopalakrishnan, J.; Nguyen, NC; Peraire, J.; Sayas, F-J, Analysis of HDG methods for Stokes flow, Math. Comput., 80, 723-760 (2011) · Zbl 1410.76164 · doi:10.1090/S0025-5718-2010-02410-X
[17] Cockburn, B.; Sayas, F-J, Divergence-conforming HDG methods for Stokes flows, Math. Comput., 83, 1571-1598 (2014) · Zbl 1427.76125 · doi:10.1090/S0025-5718-2014-02802-0
[18] Cockburn, B.; Guzmán, J.; Soon, S-C; Stolarski, HK, An analysis of the embedded discontinuous Galerkin method for second-order elliptic problems, SIAM J. Numer. Anal., 47, 2686-2707 (2009) · Zbl 1211.65153 · doi:10.1137/080726914
[19] Chen, H.; Li, J.; Qiu, W., Robust a posteriori error estimates for HDG method for convection diffusion equations, IMA J. Numer. Anal., 36, 437-462 (2016) · Zbl 1338.65243
[20] Chen, H.; Qiu, W.; Shi, K., A priori and computable a posteriori error estimates for an HDG method for the coercive Maxwell equations, Comput. Methods Appl. Mech. Engrg., 333, 287-310 (2018) · Zbl 1440.78005 · doi:10.1016/j.cma.2018.01.030
[21] Fulford, G.; Blake, J., Muco-ciliary transport in the lung, J. Theor. Biol., 121, 381-402 (1986) · doi:10.1016/S0022-5193(86)80098-4
[22] Fuica, F., Lepe, F., Otárola, E., Quero, D.: A posteriori error estimates in \(W^{1,p}\times L^p\) spaces for the Stokes system with Dirac measures (2019) arXiv:1912.08325 · Zbl 1524.65801
[23] Fuica, F.; Otárola, E.; Quero, D., Error estimates for optimal control problems invovling the Stokes system and Dirac measures, Appl. Math. Optim., 84, 1717-1750 (2021) · Zbl 1473.35440 · doi:10.1007/s00245-020-09693-0
[24] Fu, G.; Qiu, W.; Zhang, W., An analysis of HDG methods for convection-dominated diffusion problems, ESAIM: M2AN, 49, 225-256 (2015) · Zbl 1314.65142 · doi:10.1051/m2an/2014032
[25] Galdi, GP, An introduction to the mathematical theory of the Navier-Stokes equations: steady-state problems (2011), New York: Springer, New York · Zbl 1245.35002 · doi:10.1007/978-0-387-09620-9
[26] Houston, P.; Wihler, TP, Discontinuous Galerkin methods for problems with Dirac delta source, ESAIM: Math, Model. Numer. Anal., 46, 1467-1483 (2012) · Zbl 1272.65092 · doi:10.1051/m2an/2012010
[27] Ignacio, O., Optimal a priori error estimates in weighted Sobolev spaces for the Poisson problem with singular sources, ESAIM: Math, Model. Numer. Anal., 55, s879-s907 (2021) · Zbl 1473.35126 · doi:10.1051/m2an/2020065
[28] Karakashian, OA; Pascal, F., A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems, SIAM J. Numer. Anal., 41, 2374-2399 (2003) · Zbl 1058.65120 · doi:10.1137/S0036142902405217
[29] Lacouture, L., A numerical method to solve the Stokes problem with punctual force in source term, Comptes Rendus Mcanique, 343, 187-191 (2015) · doi:10.1016/j.crme.2014.09.008
[30] Labeur, RJ; Wells, GN, A Galerkin interface stabilization method for the advection-diffusion and incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 196, 4985-5000 (2007) · Zbl 1173.76344 · doi:10.1016/j.cma.2007.06.025
[31] Labeur, RJ; Wells, GN, Energy stable and momentum conserving hybrid finite element method for the incompressible Navier-Stokes equations, SIAM J. Sci. Comput., 32, A889-A913 (2012) · Zbl 1391.76344 · doi:10.1137/100818583
[32] Lepe, F.; Otárola, E.; Quero, D., Error estimates for FEM discretizations of the Navier-Stokes equations with Dirac measures, J. Sci. Comput., 87, 97 (2021) · Zbl 1471.35235 · doi:10.1007/s10915-021-01496-x
[33] Leng, H.; Chen, Y., A hybridizable discontinuous Galerkin method for second order elliptic equations with Dirac delta source, ESAIM: Math, Model. Numer. Anal., 56, 385-406 (2022) · Zbl 1492.65318 · doi:10.1051/m2an/2022005
[34] Maz’ya, VG; Rossmann, J., Lp estimates of solutions to mixed boundary value problems for the Stokes system in polyhedral domains, Math. Nachr., 7, 751-793 (2007) · Zbl 1187.35157 · doi:10.1002/mana.200610513
[35] Mitrea, M., Wright, M.: Bouneary value problems for the Stokes system in arbitrary Lipschitz domains, Astérisque, viii+241 (2012) · Zbl 1345.35076
[36] Nguyen, NC; Peraire, J.; Cockburn, B., A hybridization discontinuous Galerkin method for Stokes flow, Comput, Methods, Appl. Mech. Engrg., 199, 582-597 (2010) · Zbl 1227.76036 · doi:10.1016/j.cma.2009.10.007
[37] Nochetto, RH; Otárola, E.; Salgado, AJ, Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces and applications, Numer. Math., 132, 85-130 (2016) · Zbl 1334.65030 · doi:10.1007/s00211-015-0709-6
[38] Qiu, W.; Shen, J.; Shi, K., An HDG method for linear elasticity with strong symmetric stresses, Math. Comput., 87, 69-93 (2018) · Zbl 1410.65459 · doi:10.1090/mcom/3249
[39] Rhebergen, S.; Wells, GN, Analysis of a hybridized/interface stabilized finite element method for the Stokes equations, SIAM J. Numer. Anal., 55, 1982-2003 (2017) · Zbl 1426.76299 · doi:10.1137/16M1083839
[40] Rhebergen, S.; Wells, GN, An embedded-hybridized discontinuous Galerkin finite element method for the Stokes equations, Comput. Methods Appl. Mech. Engrg., 358 (2020) · Zbl 1441.76072 · doi:10.1016/j.cma.2019.112619
[41] Svensson, E. D., Larsson, S.: Pointwise a posteriori error estimates for the Stokes equations in polyhedral domains, preprint (2006)
[42] Scott, R., Finite element convergence for singular data, Numer. Math., 21, 317-327 (1973) · Zbl 0255.65037 · doi:10.1007/BF01436386
[43] Verfürth, R., A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques (1996), New York: Wiley and Teubner, New York · Zbl 0853.65108
[44] Verfürth, R., A posteriori error estimators for convection-diffusion equations, Numer. Math., 80, 641-663 (1998) · Zbl 0913.65095 · doi:10.1007/s002110050381
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.