×

Abelian combinatorics on words: a survey. (English) Zbl 07698737


MSC:

68R15 Combinatorics on words

References:

[1] Lothaire, M., (Combinatorics on Words. Combinatorics on Words, Cambridge Mathematical Library (1997), Cambridge Univ. Press) · Zbl 0874.20040
[2] Lothaire, M., (Algebraic Combinatorics on Words. Algebraic Combinatorics on Words, Encyclopedia of Mathematics and its Applications (2002), Cambridge Univ. Press) · Zbl 1001.68093
[3] Lothaire, M., Applied Combinatorics on Words (2005), Cambridge Univ. Press · Zbl 1133.68067
[4] Pytheas Fogg, N., (Substitutions in Dynamics, Arithmetics and Combinatorics. Substitutions in Dynamics, Arithmetics and Combinatorics, Lecture Notes in Math., vol. 1794 (2002), Springer) · Zbl 1014.11015
[5] Allouche, J.-P.; Shallit, J. O., Automatic Sequences - Theory, Applications, Generalizations (2003), Cambridge University Press · Zbl 1086.11015
[6] Choffrut, C.; Karhumäki, J., Combinatorics of words, (Rozenberg, G.; Salomaa, A., Handbook of Formal Languages, Volume 1: Word, Language, Grammar (1997), Springer), 329-438 · Zbl 0866.68057
[7] (Berthé, V.; Rigo, M., Combinatorics, Automata and Number Theory. Combinatorics, Automata and Number Theory, Encyclopedia of Mathematics and its Applications, vol. 135 (2010), Cambridge University Press) · Zbl 1197.68006
[8] Rigo, M., Formal Languages, Automata and Numeration Systems 1: Introduction to Combinatorics on Words (2014), John Wiley & Sons · Zbl 1326.68002
[9] Morse, M.; Hedlund, G. A., Symbolic dynamics, Amer. J. Math., 60, 1-42 (1938) · JFM 66.0188.03
[10] Arnoux, P.; Rauzy, G., Représentation géométrique de suites de complexité \(2 n + 1\), Bull. Soc. Math. France, 119, 199-215 (1991) · Zbl 0789.28011
[11] Droubay, X.; Justin, J.; Pirillo, G., Episturmian words and some constructions by de Luca and Rauzy, Theoret. Comput. Sci., 255 (2001) · Zbl 0981.68126
[12] de Luca, A., Sturmian words: structure, combinatorics, and their arithmetics, Theoret. Comput. Sci., 183, 1, 45-82 (1997) · Zbl 0911.68098
[13] Mignosi, F.; Pirillo, G., Repetitions in the fibonacci infinite word, RAIRO Theor. Inform. Appl., 26, 199-204 (1992) · Zbl 0761.68078
[14] Lind, D.; Marcus, B., An Introduction to Symbolic Dynamics and Coding (1995), Camb. Univ. Press: Camb. Univ. Press New York, NY, USA · Zbl 1106.37301
[15] Parikh, R. J., On context-free languages, J. ACM, 13, 4, 570-581 (1966) · Zbl 0154.25801
[16] Kamae, T.; Zamboni, L., Sequence entropy and the maximal pattern complexity of infinite words, Ergodic Theory Dynam. Systems, 22, 4, 1191-1199 (2002) · Zbl 1014.37004
[17] Coven, E.; Hedlund, G., Sequences with minimal block growth, Math. Systems Theory, 7, 138-153 (1973) · Zbl 0256.54028
[18] Richomme, G.; Saari, K.; Zamboni, L., Abelian complexity of minimal subshifts, J. Lond. Math. Soc., 83, 1, 79-95 (2011) · Zbl 1211.68300
[19] Richomme, G.; Saari, K.; Zamboni, L. Q., Balance and Abelian complexity of the Tribonacci word, Adv. Appl. Math., 45, 2, 212-231 (2010) · Zbl 1203.68131
[20] Turek, O., Abelian complexity function of the tribonacci word, J. Integer Seq., 18, 15.3.4 (2015) · Zbl 1311.68128
[21] Shallit, J., Abelian complexity and synchronization, Integers, 21, A36 (2021) · Zbl 1475.11041
[22] Cassaigne, J.; Ferenczi, S.; Zamboni, L. Q., Imbalances in Arnoux-Rauzy sequences, Ann. Inst. Fourier, 50, 4, 1265-1276 (2000) · Zbl 1004.37008
[23] Madill, B.; Rampersad, N., The abelian complexity of the paperfolding word, Discrete Math., 313, 7, 831-838 (2013) · Zbl 1260.05002
[24] Blanchet-Sadri, F.; Currie, J.; Rampersad, N.; Fox, N., Abelian complexity of fixed point of morphism \(0 \mapsto 012, 1 \mapsto 02, 2 \mapsto 1\), Integers, 14, A11 (2014) · Zbl 1285.68128
[25] Rauzy, G., Suites à termes dans un alphabet fini, (Séminaire de Théorie des Nombres de Bordeaux, Vol. 25 (1982)), 1-16 · Zbl 0547.10048
[26] Currie, J.; Rampersad, N., Recurrent words with constant Abelian complexity, Adv. Appl. Math., 47, 1, 116-124 (2011) · Zbl 1222.68126
[27] Saarela, A., Ultimately constant abelian complexity of infinite words, J. Autom. Lang. Comb., 14, 3/4, 255-258 (2009) · Zbl 1205.68274
[28] Pansiot, J.-J., Bornes inférieures sur la complexité des facteurs des mots infinis engendrés par morphismes itérés, (Fontet, M.; Mehlhorn, K., STACS 84 (1984), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 230-240 · Zbl 0543.68061
[29] Adamczewski, B., Balances for fixed points of primitive substitutions, Theoret. Comput. Sci., 307, 1, 47-75 (2003) · Zbl 1059.68083
[30] Blanchet-Sadri, F.; Fox, N.; Rampersad, N., On the asymptotic abelian complexity of morphic words, Adv. Appl. Math., 61, 46-84 (2014) · Zbl 1371.68220
[31] Whiteland, M. A., Asymptotic abelian complexities of certain morphic binary words, J. Autom. Lang. Comb., 24, 1, 89-114 (2019) · Zbl 1452.68144
[32] Blanchet-Sadri, F.; Seita, D.; Wise, D., Computing abelian complexity of binary uniform morphic words, Theoret. Comput. Sci., 640, 41-51 (2016) · Zbl 1352.68198
[33] Kamae, T.; Rao, H., Maximal pattern complexity of words over l letters, European J. Combin., 27, 1, 125-137 (2006) · Zbl 1082.68090
[34] Kamae, T.; Widmer, S.; Zamboni, L. Q., Abelian maximal pattern complexity of words, Ergodic Theory Dynam. Systems, 35, 1, 142-151 (2015) · Zbl 1351.37052
[35] Richmond, L. B.; Shallit, J. O., Counting abelian squares, Electron. J. Combin., 16, 1 (2009) · Zbl 1191.68479
[36] Holub, Š., Abelian powers in paper-folding words, J. Combin. Theory Ser. A, 120, 4, 872-881 (2013) · Zbl 1262.68146
[37] Cassaigne, J.; Richomme, G.; Saari, K.; Zamboni, L., Avoiding abelian powers in binary words with bounded abelian complexity, Internat. J. Found. Comput. Sci., 22, 4, 905-920 (2011) · Zbl 1223.68089
[38] Krieger, D.; Shallit, J. O., Every real number greater than 1 is a critical exponent, Theoret. Comput. Sci., 381, 1-3, 177-182 (2007) · Zbl 1188.68216
[39] Fici, G.; Langiu, A.; Lecroq, T.; Lefebvre, A.; Mignosi, F.; Peltomäki, J.; Prieur-Gaston, É., Abelian powers and repetitions in Sturmian words, Theoret. Comput. Sci., 635, 16-34 (2016) · Zbl 1346.68150
[40] Peltomäki, J.; Whiteland, M. A., All growth rates of abelian exponents are attained by infinite binary words, (Esparza, J.; Král’, D., MFCS 2020. MFCS 2020, LIPIcs, vol. 170 (2020), Schloss Dagstuhl - Leibniz-Zentrum für Informatik), 79:1-79:10 · Zbl 07559450
[41] Fraenkel, A. S.; Simpson, J., How many squares can a string contain?, J. Combin. Theory Ser. A, 82, 1, 112-120 (1998) · Zbl 0910.05001
[42] Brlek, S.; Li, S., On the number of squares in a finite word (2022), CoRR, abs/2204.10204
[43] Li, S., On the number of k-powers in a finite word, Adv. Appl. Math., 139, Article 102371 pp. (2022) · Zbl 1502.68252
[44] Kociumaka, T.; Radoszewski, J.; Rytter, W.; Waleń, T., Maximum number of distinct and nonequivalent nonstandard squares in a word, Theoret. Comput. Sci., 648, 84-95 (2016) · Zbl 1350.68217
[45] Simpson, J., Solved and unsolved problems about abelian squares (2018), CoRR, abs/1802.04481
[46] Christodoulakis, M.; Christou, M.; Crochemore, M.; Iliopoulos, C. S., On the average number of regularities in a word, Theoret. Comput. Sci., 525, 3-9 (2014) · Zbl 1294.68116
[47] Fici, G.; Mignosi, F.; Shallit, J. O., Abelian-square-rich words, Theoret. Comput. Sci., 684, 29-42 (2017) · Zbl 1395.68224
[48] Entringer, R. C.; Jackson, D. E.; Schatz, J. A., On nonrepetitive sequences, J. Combin. Theory Ser. A, 16, 2, 159-164 (1974) · Zbl 0279.05001
[49] Fici, G.; Saarela, A., On the minimum number of abelian squares in a word, Comb. Algorithmics Strings Dagstuhl Rep., 4, 3, 34-35 (2014)
[50] Henshall, D.; Rampersad, N.; Shallit, J. O., Shuffling and unshuffling, Bull. EATCS, 107, 131-142 (2012) · Zbl 1394.68212
[51] Fici, G.; Restivo, A.; Silva, M.; Zamboni, L. Q., Anti-powers in infinite words, J. Combin. Theory Ser. A, 157, 109-119 (2018) · Zbl 1393.68141
[52] Fici, G.; Postic, M.; Silva, M., Abelian antipowers in infinite words, Adv. Appl. Math., 108, 67-78 (2019) · Zbl 1419.68068
[53] Ochem, P.; Rao, M.; Rosenfeld, M., Avoiding or limiting regularities in words, (Berthé, V.; Rigo, M., Sequences, Groups, and Number Theory (2018), Springer International Publishing), 177-212 · Zbl 1405.05004
[54] Rampersad, N.; Shallit, J., Repetitions in words, (Berthé, V.; Rigo, M., Combinatorics, Words and Symbolic Dynamics (2016), Cambridge University Press) · Zbl 1370.05003
[55] Erdős, P., Some unsolved problems, Magyar Tud. Akad. Mat. Kutató Int. Közl., 6, 221-254 (1961) · Zbl 0100.02001
[56] Dekking, F., Strongly non-repetitive sequences and progression-free sets, J. Combin. Theory Ser. A, 27, 2, 181-185 (1979) · Zbl 0437.05011
[57] Keränen, V., Abelian squares are avoidable on 4 letters, (ICALP 1992. ICALP 1992, Lecture Notes in Comput. Sci., vol. 623 (1992), Springer-Verlag), 41-52 · Zbl 1425.68331
[58] Pleasants, P., Non-repetitive sequences, Proc. Cambridge Philos. Soc., 68, 267-274 (1970) · Zbl 0237.05010
[59] Evdokimov, A., Strongly asymmetric sequences generated by a finite number of symbols. (Russian), Dokl. Akad. Nauk SSSR, 179, 1268-1271 (1968) · Zbl 0186.01504
[60] Keränen, V., A powerful abelian square-free substitution over 4 letters, Theoret. Comput. Sci., 410, 38-40, 3893-3900 (2009) · Zbl 1172.68035
[61] Carpi, A., On abelian power-free morphisms, Internat. J. Algebra Comput., 3, 2, 151-168 (1993) · Zbl 0784.20029
[62] Carpi, A., On the number of abelian square-free words on four letters, Discrete Appl. Math., 81, 1-3, 155-167 (1998) · Zbl 0894.68113
[63] Aberkane, A.; Currie, J.; Rampersad, N., The number of ternary words avoiding abelian cubes grows exponentially, J. Integer Seq., 7, 04.2.7 (2004) · Zbl 1101.68741
[64] Currie, J., The number of binary words avoiding abelian fourth powers grows exponentially, Theoret. Comput. Sci., 319, 1-3, 441-446 (2004) · Zbl 1068.68113
[65] Rao, M.; Rosenfeld, M., Avoiding two consecutive blocks of same size and same sum over \(\mathbb{z}^2\), SIAM J. Discrete Math., 32, 4, 2381-2397 (2018) · Zbl 1408.68125
[66] Keränen, V., New abelian square-free DT0L-languages over 4 letters, Manuscript (2003) · Zbl 1051.68118
[67] Rao, M.; Rosenfeld, M., Avoidability of long k-abelian repetitions, Math. Comp., 85, 302, 3051-3060 (2016) · Zbl 1359.68244
[68] Peltomäki, J.; Whiteland, M. A., Avoiding abelian powers cyclically, Adv. Appl. Math., 121, Article 102095 pp. (2020) · Zbl 1472.68126
[69] Dejean, F., Sur un théorème de thue, J. Comb. Theory Ser. A, 13, 1, 90-99 (1972) · Zbl 0245.20052
[70] Currie, J.; Rampersad, N., A proof of Dejean’s conjecture, Math. Comp., 80, 274, 1063-1070 (2011) · Zbl 1215.68192
[71] Rao, M., Last cases of Dejean’s conjecture, Theoret. Comput. Sci., 412, 27, 3010-3018 (2011) · Zbl 1230.68163
[72] Cassaigne, J.; Currie, J., Words strongly avoiding fractional powers, European J. Combin., 20, 8, 725-737 (1999) · Zbl 0948.68140
[73] Samsonov, A. V.; Shur, A. M., On abelian repetition threshold, RAIRO Theor. Inform. Appl., 46, 1, 147-163 (2012) · Zbl 1279.68240
[74] Avgustinovich, S. V.; Frid, A. E., Words avoiding abelian inclusions, J. Autom. Lang. Comb., 7, 1, 3-9 (2002) · Zbl 1021.68069
[75] Dwight Richard Bean, A. E.; McNulty, G. F., Avoidable patterns in strings of symbols, Pacific J. Math., 85, 2, 261-294 (1979) · Zbl 0428.05001
[76] Zimin, A. I., Blocking sets of terms, Sbornik: Math., 47, 2, 353-364 (1984) · Zbl 0599.20106
[77] Currie, J.; Visentin, T., Long binary patterns are Abelian 2-avoidable, Theoret. Comput. Sci., 409, 3, 432-437 (2008) · Zbl 1171.68034
[78] Rosenfeld, M., Every binary pattern of length greater than 14 is abelian-2-avoidable, (MFCS 2016. MFCS 2016, LIPIcs, vol. 58 (2016), Schloss Dagstuhl - Leibniz-Zentrum für Informatik), 81:1-81:11 · Zbl 1398.68423
[79] Currie, J.; Linek, V., Avoiding patterns in the abelian sense, Canad. J. Math., 53 (2001) · Zbl 0986.68103
[80] Mignosi, F.; Séébold, P., If a D0L language is \(k\)-power free then it is circular, (Lingas, A.; Karlsson, R. G.; Carlsson, S., ICALP 1993. ICALP 1993, Lecture Notes in Computer Science, vol. 700 (1993), Springer), 507-518 · Zbl 1422.68157
[81] Currie, J.; Rampersad, N., Fixed points avoiding Abelian \(k\)-powers, J. Combin. Theory Ser. A, 119, 5, 942-948 (2012) · Zbl 1298.68203
[82] Constantinescu, S.; Ilie, L., Fine and wilf’s theorem for abelian periods, Bull. Eur. Assoc. Theoret. Comput. Sci. EATCS, 89, 167-170 (2006) · Zbl 1169.68561
[83] Fine, N.; Wilf, H., Uniqueness theorem for periodic functions, Proc. Amer. Math. Soc., 16, 109-114 (1965) · Zbl 0131.30203
[84] Simpson, J., An abelian periodicity lemma, Theoret. Comput. Sci., 656, 249-255 (2016) · Zbl 1362.68241
[85] Césari, Y.; Vincent, M., Une caractérisation des mots périodiques, C. R. Math. Acad. Sci. Paris, 286, A, 1175-1177 (1978) · Zbl 0392.20039
[86] Mignosi, F.; Restivo, A.; Salemi, S., Periodicity and the golden ratio, Theoret. Comput. Sci., 204, 1-2, 153-167 (1998) · Zbl 0913.68162
[87] Avgustinovich, S.; Karhumäki, J.; Puzynina, S., On abelian versions of critical factorization theorem, RAIRO Theor. Inform. Appl., 46, 3-15 (2012) · Zbl 1247.68200
[88] Charlier, É.; Harju, T.; Puzynina, S.; Zamboni, L. Q., Abelian bordered factors and periodicity, European J. Combin., 51, 407-418 (2016) · Zbl 1329.68192
[89] Domaratzki, M.; Rampersad, N., Abelian primitive words, Internat. J. Found. Comput. Sci., 23, 5, 1021-1034 (2012) · Zbl 1278.68237
[90] Dömösi, P.; Ito, M., Context-Free Languages and Primitive Words (2014), World Scientific
[91] Goč, D.; Rampersad, N.; Rigo, M.; Salimov, P., On the number of abelian bordered words (with an example of automatic theorem-proving), Internat. J. Found. Comput. Sci., 25, 8, 1097-1110 (2014) · Zbl 1309.68162
[92] Shallit, J., (The Logical Approach to Automatic Sequences: Exploring Combinatorics on Words with Walnut. The Logical Approach to Automatic Sequences: Exploring Combinatorics on Words with Walnut, London Mathematical Society Lecture Note Series (2022), Cambridge University Press) · Zbl 07565707
[93] Christodoulakis, M.; Christou, M.; Crochemore, M.; Iliopoulos, C. S., Abelian borders in binary words, Discrete Appl. Math., 171, 141-146 (2014) · Zbl 1311.68127
[94] Blanchet-Sadri, F.; Chen, K.; Hawes, K., Dyck words, lattice paths, and abelian borders, Internat. J. Found. Comput. Sci., 33, 203-226 (2022) · Zbl 1529.68234
[95] Ehrenfeucht, A.; Silberger, D., Periodicity and unbordered segments of words, Discrete Math., 26, 2, 101-109 (1979) · Zbl 0416.20051
[96] Charlier, É.; Kamae, T.; Puzynina, S.; Zamboni, L. Q., Infinite self-shuffling words, J. Combin. Theory Ser. A, 128, 1-40 (2014) · Zbl 1309.68161
[97] Holub, Š.; Saari, K., On highly palindromic words, Discrete Appl. Math., 157, 5, 953-959 (2009) · Zbl 1187.68363
[98] Ago, K.; Basic, B., On highly palindromic words: The \(n\)-ary case, Discrete Appl. Math., 304, 98-109 (2021) · Zbl 1482.68189
[99] Mignosi, F., Infinite words with linear subword complexity, Theoret. Comput. Sci., 65, 2, 221-242 (1989) · Zbl 0682.68083
[100] Durand, F., Corrigendum and addendum to ‘Linearly recurrent subshifts have a finite number of non-periodic factors’, Ergodic Theory Dynam. Systems, 23, 2, 663-669 (2003)
[101] Carpi, A.; de Luca, A., Special factors, periodicity, and an application to Sturmian words, Acta Inf., 36, 983-1006 (2000) · Zbl 0956.68119
[102] Vandeth, D., Sturmian words and words with a critical exponent, Theoret. Comput. Sci., 242, 1-2, 283-300 (2000) · Zbl 0944.68148
[103] Damanik, D.; Lenz, D., The index of Sturmian sequences, European J. Combin., 23, 1, 23-29 (2002) · Zbl 1002.11020
[104] Currie, J.; Saari, K., Least periods of factors of infinite words, RAIRO Theor. Inform. Appl., 43, 1, 165-178 (2009) · Zbl 1162.68510
[105] Peltomäki, J., Abelian periods of factors of Sturmian words, J. Number Theory, 214, 251-285 (2020) · Zbl 1458.68152
[106] Vuillon, L., A characterization of Sturmian words by return words, European J. Combin., 22, 2, 263-275 (2001) · Zbl 0968.68124
[107] Rigo, M.; Salimov, P.; Vandomme, É., Some properties of abelian return words, J. Integer Seq., 16, 13.2.5 (2013) · Zbl 1297.68195
[108] Masáková, Z.; Pelantová, E., Enumerating abelian returns to prefixes of Sturmian words, (WORDS 2013. WORDS 2013, Lecture Notes in Computer Science, vol. 8079 (2013), Springer), 193-204 · Zbl 1398.68420
[109] Rampersad, N.; Rigo, M.; Salimov, P., A note on abelian returns in rotation words, Theoret. Comput. Sci., 528, 101-107 (2014) · Zbl 1295.68179
[110] Saari, K., Everywhere \(\alpha \)-repetitive sequences and Sturmian words, European J. Combin., 31, 1, 177-192 (2010) · Zbl 1187.68369
[111] Peltomäki, J.; Whiteland, M. A., A square root map on Sturmian words, Electron. J. Combin., 24, 1, P1.54 (2017) · Zbl 1366.68227
[112] Peltomäki, J., Privileged Words and Sturmian Words (2016), University of Turku: University of Turku Finland, (Ph.D. thesis) · Zbl 1296.68119
[113] Huova, M.; Karhumäki, J.; Saarela, A., Problems in between words and abelian words: \(k\)-abelian avoidability, Theoret. Comput. Sci., 454, 172-177 (2012) · Zbl 1280.68149
[114] Rao, M., On some generalizations of abelian power avoidability, Theoret. Comput. Sci., 601, 39-46 (2015) · Zbl 1330.68242
[115] Karhumäki, J.; Saarela, A.; Zamboni, L. Q., On a generalization of abelian equivalence and complexity of infinite words, J. Combin. Theory Ser. A, 120, 8, 2189-2206 (2013) · Zbl 1278.05009
[116] Karhumäki, J.; Saarela, A.; Zamboni, L. Q., Variations of the Morse-Hedlund theorem for k-abelian equivalence, Acta Cybern., 23, 1, 175-189 (2017) · Zbl 1389.68063
[117] Parreau, A.; Rigo, M.; Rowland, E.; Vandomme, É., A new approach to the 2-regularity of the \(l\)-abelian complexity of 2-automatic sequences, Electron. J. Combin., 22, 1, 1 (2015) · Zbl 1317.68138
[118] Karhumäki, J.; Puzynina, S.; Rao, M.; Whiteland, M. A., On cardinalities of k-abelian equivalence classes, Theoret. Comput. Sci., 658, 190-204 (2017) · Zbl 1356.68166
[119] Cassaigne, J.; Karhumäki, J.; Puzynina, S.; Whiteland, M. A., \(k\)-Abelian equivalence and rationality, Fund. Inform., 154, 1-4, 65-94 (2017) · Zbl 1396.68084
[120] Berstel, J.; Reutenauer, C., (Rational Series and their Languages. Rational Series and their Languages, EATCS Monographs on Theoretical Computer Science, vol. 12 (1988), Springer) · Zbl 0668.68005
[121] Whiteland, M. A., On the \(k\)-Abelian Equivalence Relation of Finite Words (2019), University of Turku: University of Turku TUCS Dissertations No 416, (Ph.D. thesis)
[122] Cassaigne, J.; Karhumäki, J.; Puzynina, S., On k-abelian palindromes, Inform. and Comput., 260, 89-98 (2018) · Zbl 1393.68138
[123] Karhumäki, J.; Puzynina, S.; Saarela, A., Fine and Wilf’s theorem for \(k\)-abelian periods, Internat. J. Found. Comput. Sci., 24, 7, 1135-1152 (2013) · Zbl 1293.68210
[124] Peltomäki, J.; Whiteland, M. A., On \(k\)-abelian equivalence and generalized Lagrange spectra, Acta Arith., 194, 135-154 (2020) · Zbl 1467.68150
[125] Gerver, J. L.; Ramsey, L. T., On certain sequences of lattice points, Pacific J. Math., 83, 2, 357-363 (1979) · Zbl 0387.60074
[126] Avgustinovich, S. V.; Puzynina, S., Weak abelian periodicity of infinite words, Theory Comput. Syst., 59, 2, 161-179 (2016) · Zbl 1354.68212
[127] Rigo, M.; Salimov, P., Another generalization of abelian equivalence: Binomial complexity of infinite words, Theoret. Comput. Sci., 601, 47-57 (2015) · Zbl 1330.68243
[128] Chrisnata, J.; Kiah, H. M.; Karingula, S. R.; Vardy, A.; Yao, E. Y.; Yao, H., On the number of distinct \(k\)-decks: Enumeration and bounds, Adv. Math. Commun. (2022)
[129] Lejeune, M.; Rigo, M.; Rosenfeld, M., The binomial equivalence classes of finite words, Int. J. Algebra Comput., 30, 07, 1375-1397 (2020) · Zbl 1453.68145
[130] Lejeune, M.; Rigo, M.; Rosenfeld, M., Templates for the k-binomial complexity of the tribonacci word, Adv. Appl. Math., 112 (2020) · Zbl 1447.68013
[131] Rigo, M.; Stipulanti, M.; Whiteland, M. A., Binomial complexities and parikh-collinear morphisms, (Diekert, V.; Volkov, M. V., DLT 2022. DLT 2022, Lecture Notes in Computer Science, vol. 13257 (2022), Springer), 251-262 · Zbl 07571014
[132] Rao, M.; Rigo, M.; Salimov, P., Avoiding 2-binomial squares and cubes, Theoret. Comput. Sci., 572, 83-91 (2015) · Zbl 1325.68173
[133] Halbeisen, L.; Hungerbühler, N., An application of Van der Waerden’s theorem in additive number theory, INTEGERS: Electron. J. Comb. Number Theory (2000), 0, paper A7 · Zbl 0962.11017
[134] Cassaigne, J.; Currie, J.; Schaeffer, L.; Shallit, J. O., Avoiding three consecutive blocks of the same size and same sum, J. ACM, 61, 2, 10:1-10:17 (2014) · Zbl 1295.68173
[135] Lietard, F.; Rosenfeld, M., Avoidability of additive cubes over alphabets of four numbers, (Jonoska, N.; Savchuk, D., DLT 2020. DLT 2020, Lecture Notes in Computer Science, vol. 12086 (2020), Springer), 192-206 · Zbl 07601071
[136] Lietard, F., Évitabilité de Puissances Additives en Combinatoire des Mots (2020), Mathématiques [math], Université de Lorraine, (Ph.D. thesis)
[137] Puzynina, S.; Whiteland, M. A., Abelian closures of infinite binary words, J. Combin. Theory Ser. A, 185, Article 105524 pp. (2022) · Zbl 1484.68175
[138] Karhumäki, J.; Puzynina, S.; Whiteland, M. A., On abelian closures of infinite non-binary words (2020), CoRR, abs/2012.14701
[139] Karhumäki, J.; Puzynina, S.; Whiteland, M. A., On abelian subshifts, (Hoshi, M.; Seki, S., DLT 2018. DLT 2018, Lecture Notes in Computer Science, vol. 11088 (2018), Springer), 453-464 · Zbl 1517.68317
[140] Ferenczi, S.; Mauduit, C., Transcendence of numbers with a low complexity expansion, J. Number Theory, 67, 146-161 (1997) · Zbl 0895.11029
[141] Didier, G., Caractérisation des \(N\)-écritures et application à l’étude des suites de complexité ultimement \(n + c^{s t e}\), Theoret. Comput. Sci., 215, 1-2, 31-49 (1999) · Zbl 0913.68163
[142] Kaboré, I.; Tapsoba, T., Combinatoire de mots récurrents de complexité \(n + 2\), RAIRO Theor. Inform. Appl., 41, 4, 425-446 (2007) · Zbl 1149.11013
[143] Graham, R. L., Covering the positive integers by disjoint sets of the form \(\{ [ n \alpha + \beta ] : n = 1 , 2 , . . . \}\), J. Combin. Theory Ser. A, 15, 3, 354-358 (1973) · Zbl 0279.10042
[144] Hubert, P., Suites équilibrées, Theoret. Comput. Sci., 242, 1-2, 91-108 (2000) · Zbl 0944.68149
[145] Hejda, T.; Steiner, W.; Zamboni, L. Q., What is the abelianization of the Tribonacci shift?, (Workshop on Automatic Sequences, Liège (2015))
[146] Zamboni, L. Q. (2018), Personal communication
[147] Glen, A.; Justin, J.; Widmer, S.; Zamboni, L. Q., Palindromic richness, European J. Combin., 30, 2, 510-531 (2009) · Zbl 1169.68040
[148] Puzynina, S., Aperiodic two-dimensional words of small abelian complexity, Electron. J. Combin., 26, 4, P4.15 (2019) · Zbl 1423.68374
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.