×

Hybrid DG/FV schemes for magnetohydrodynamics and relativistic hydrodynamics. (English) Zbl 07693039

Summary: This paper presents a high order hybrid discontinuous Galerkin/finite volume scheme for solving the equations of the magnetohydrodynamics (MHD) and of the relativistic hydrodynamics (SRHD) on quadrilateral meshes. In this approach, for the spatial discretization, an arbitrary high order discontinuous Galerkin spectral element (DG) method is combined with a finite volume (FV) scheme in order to simulate complex flow problems involving strong shocks. Regarding the time discretization, a fourth order strong stability preserving Runge-Kutta method is used. In the proposed hybrid scheme, a shock indicator is computed at the beginning of each Runge-Kutta stage in order to flag those elements containing shock waves or discontinuities. Subsequently, the DG solution in these troubled elements and in the current time step is projected onto a subdomain composed of finite volume subcells. Right after, the DG operator is applied to those unflagged elements, which, in principle, are oscillation-free, meanwhile the troubled elements are evolved with a robust second/third order FV operator. With this approach we are able to numerically simulate very challenging problems in the context of MHD and SRHD in one, and two space dimensions and with very high order polynomials. We make convergence tests and show a comprehensive one- and two dimensional testbench for both equation systems, focusing in problems with strong shocks. The presented hybrid approach shows that numerical schemes of very high order of accuracy are able to simulate these complex flow problems in an efficient and robust manner.

MSC:

76-XX Fluid mechanics
65-XX Numerical analysis

References:

[1] Cockburn, B.; Shu, C.-W., Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput., 16, 3, 173-261 (2001) · Zbl 1065.76135
[2] Canuto, C.; Hussaini, M.; Quarteroni, A.; Zang, T., Spectral Methods: Fundamentals in Single Domains (2006), Springer: Springer Berlin · Zbl 1093.76002
[3] Kopriva, D., Implementing Spectral Methods for Partial Differential Equations (2009), Springer: Springer Berlin · Zbl 1172.65001
[4] Nitsche, J., Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Sem. Univ. Hambg., 36, 1, 9-15 (1971) · Zbl 0229.65079
[5] Reed, W.; Hill, T., Triangular mesh methods for the neutron transport equation, Technical Report LA-UR-73-479 (1973), Los Alamos Scientific Laboratory
[6] Cockburn, B.; Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework, Math. Comp., 52, 186, 411-435 (1989) · Zbl 0662.65083
[7] Cockburn, B.; Lin, S.-Y.; Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One-dimensional systems, J. Comput. Phys., 84, 1, 90-113 (1989) · Zbl 0677.65093
[8] Cockburn, B.; Hou, S.; Shu, C.-W., The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV: The multidimensional case, Math. Comp., 54, 190, 545-581 (1990) · Zbl 0695.65066
[9] Cockburn, B.; Shu, C.-W., The Runge-Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems, J. Comput. Phys., 141, 2, 199-224 (1998) · Zbl 0920.65059
[10] Gibbs, J. W., Fourier’s series, Nature, 59, 1522, 200 (1898) · JFM 30.0240.04
[11] Gibbs, J. W., Fourier’s series, Nature, 59, 1539, 606 (1899) · JFM 30.0240.04
[12] Harten, A.; Lax, P.; van Leer, B., On upstream differencing and Godunov type methods for hyperbolic conservation laws, SIAM Rev., 25, 1, 35-61 (1983) · Zbl 0565.65051
[13] Harten, A., High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49, 3, 357-393 (1983) · Zbl 0565.65050
[14] Jiang, G.-S.; Shu, C.-W., Efficient Implementation of Weighted ENO Schemes, J. Comput. Phys., 126, 1, 202-228 (1996) · Zbl 0877.65065
[15] Shu, C.-W., High order weighted essentially nonoscillatory schemes for convection dominated problems, SIAM Rev., 51, 82-126 (2009) · Zbl 1160.65330
[16] Biswas, R.; Devine, K.; Flaherty, J., Parallel, adaptive finite element methods for conservation laws, Appl. Numer. Math., 14, 1-3, 255-283 (1994) · Zbl 0826.65084
[17] Krivodonova, L., Limiters for high-order discontinuous Galerkin methods, J. Comput. Phys., 226, 1, 879-896 (2007) · Zbl 1125.65091
[18] P.-O. Persson, J. Peraire, Proceedings of the AIAA 44th Aerospace Sciences Meeting and Exhibit, AIAA-2006-0112, Reno, Nevada, 2006.
[19] Casoni, E.; Peraire, J.; Huerta, A., One-dimensional shock-capturing for high-order discontinuous Galerkin methods, Internat. J. Numer. Methods Fluids, 71, 6, 737-755 (2013) · Zbl 1431.65171
[20] Qiu, J.; Shu, C.-W., Runge-Kutta discontinuous Galerkin method using WENO limiters, SIAM J. Sci. Comput., 26, 3, 907-929 (2005) · Zbl 1077.65109
[21] Zhu, J.; Qiu, J.; Shu, C.-W.; Dumbser, M., Runge-Kutta discontinuous Galerkin method using WENO limiters II: Unstructured meshes, J. Comput. Phys., 227, 9, 4330-4353 (2008) · Zbl 1157.65453
[22] Zhu, J.; Zhong, X.; Shu, C.-W.; Qiu, J., Runge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes, J. Comput. Phys., 248, 200-220 (2013) · Zbl 1349.65501
[23] Sonntag, M.; Munz, C.-D., (Fuhrmann, J.; Ohlberger, M.; Rohde, C., Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems. Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems, Springer Proceedings in Mathematics & Statistics, vol. 78 (2014), Springer International Publishing), 945-953 · Zbl 1426.76429
[24] Dumbser, M.; Zanotti, O.; Loubère, R.; Diot, S., A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws, J. Comput. Phys., 278, 47-75 (2014) · Zbl 1349.65448
[25] Núñez-de la Rosa, J., High-Order Methods for Computational Astrophysics (2015), Dr. Hut Verlag: Dr. Hut Verlag Munich, Germany
[26] Sonntag, M.; Munz, C.-D., Efficient parallelization of a shock capturing for discontinuous Galerkin methods using finite volume sub-cells, J. Sci. Comput., 1-28 (2016)
[27] Radice, D.; Rezzolla, L., Discontinuous Galerkin methods for general-relativistic hydrodynamics: Formulation and application to spherically symmetric spacetimes, Phys. Rev. D, 84, 2, 024010 (2011)
[28] Ryu, D.; Jones, T., Numerical magnetohydrodynamics in astrophysics: Algorithm and tests for one-dimensional flow, Astrophys. J., 442, 228-258 (1995)
[29] Ryu, D.; Jones, T., Numerical magnetohydrodynamics in astrophysics: Algorithm and tests for multidimensional flow, Astrophys. J., 452, 785-796 (1995)
[30] Dai, W.; Woodward, P., Approximate Riemann solver for the ideal magnetohydrodynamics, J. Comput. Phys., 111, 354-372 (1994) · Zbl 0797.76052
[31] Dai, W.; Woodward, P., Extension of the piecewise parabolic method to multidimensional ideal magnetohydrodynamics, J. Comput. Phys., 115, 485-514 (1994) · Zbl 0813.76058
[32] Mignone, A.; Bodo, G.; Massaglia, S.; Matsakos, T.; Tesileanu, O.; Zanni, C.; Ferrari, A., PLUTO: A numerical code for computational astrophysics, Astrophys. J. Suppl. Ser., 170, 1, 228-242 (2007)
[33] Núñez-de la Rosa, J.; Munz, C.-D., XTROEM-FV: A new code for computational astrophysics based on very high order finite-volume methods -I. Magnetohydrodynamics, Mon. Not. R. Astron. Soc., 455, 4, 3458-3479 (2016)
[34] Woodward, P.; Colella, P., The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys., 54, 1, 115-173 (1984) · Zbl 0573.76057
[35] Martí, J. M.; Müller, E., Extension of the piecewise parabolic method to one-dimensional relativistic hydrodynamics, J. Comput. Phys., 123, 1, 1-14 (1996) · Zbl 0839.76056
[36] Núñez-de la Rosa, J.; Munz, C.-D., XTROEM-FV: A new code for computational astrophysics based on very high order finite-volume methods -II. Relativistic hydro- and magnetohydrodynamics, Mon. Not. R. Astron. Soc., 460, 1, 535-559 (2016)
[37] Zhang, W.; MacFadyen, A., RAM: A relativistic adaptive mesh refinement hydrodynamics code, Astrophys. J. Suppl. Ser., 164, 1, 255 (2006)
[38] Tchekhovskoy, A.; McKinney, J.; Narayan, R., WHAM: A WENO-based general relativistic numerical scheme - I. Hydrodynamics, Mon. Not. R. Astron. Soc., 379, 2, 469-497 (2007)
[39] Radice, D.; Rezzolla, L., THC: A new high-order finite-difference high-resolution shock-capturing code for special-relativistic hydrodynamics, Astron. Astrophys., 547, A26 (2012)
[40] Zanotti, O.; Dumbser, M., A high order special relativistic hydrodynamic and magnetohydrodynamic code with space-time adaptive mesh refinement, Comput. Phys. Comm., 188, 0, 110-127 (2015) · Zbl 1344.76058
[41] Brackbill, J.; Barnes, D., The effect of nonzero \(\nabla \cdot \mathbf{B}\) on the numerical solution of the magnetohydrodynamic equations, J. Comput. Phys., 35, 426-430 (1980) · Zbl 0429.76079
[42] Powell, K., An approximate Riemann solver for magnetohydrodynamics, Technical Report (1994), Institute for Computer Applications in Science and Engineering, NASA Langley Research Center
[43] Dedner, A.; Kemm, F.; Kröner, D.; Munz, C.-D.; Schnitzer, T.; Wesenberg, M., Hyperbolic divergence cleaning for the MHD equations, J. Comput. Phys., 175, 2, 645-673 (2002) · Zbl 1059.76040
[44] Evans, C.; Hawley, J., Simulation of magnetohydrodynamic flows - A constrained transport method, Astrophys. J., 332, 659-677 (1988)
[45] Mignone, A.; Tzeferacos, P.; Bodo, G., High-order conservative finite difference GLM-MHD schemes for cell-centered MHD, J. Comput. Phys., 229, 17, 5896-5920 (2010) · Zbl 1425.76305
[46] Munz, C.-D.; Schneider, R.; Sonnendrücker, E.; Voss, U., Maxwell’s equations when the charge conservation is not satisfied, C. R. Acad. Sci. Math., 328, 5, 431-436 (1999) · Zbl 0937.78005
[47] Rezzolla, L.; Zanotti, O., Relativistic Hydrodynamics (2013), Oxford University Press: Oxford University Press Oxford · Zbl 1297.76002
[48] Mignone, A.; Plewa, T.; Bodo, G., The piecewise parabolic method for multidimensional relativistic fluid dynamics, Astrophys. J. Suppl. Ser., 160, 1, 199-219 (2005)
[49] Ryu, D.; Chattopadhyay, I.; Choi, E., Equation of state in numerical relativistic hydrodynamics, Astrophys. J. Suppl. Ser., 166, 410-420 (2006)
[50] Anile, A., Relativistic Fluids and Magnetofluids (1989), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0701.76003
[51] Schneider, V.; Katscher, U.; Rischke, D.; Waldhauser, B.; Maruhn, J.; Munz, C.-D., New algorithms for ultra-relativistic numerical hydrodynamics, J. Comput. Phys., 105, 1, 92-107 (1993) · Zbl 0779.76062
[52] Duncan, C.; Hughes, P., Simulations of relativistic extragalactic jets, Astrophys. J., 436, L119-L122 (1994)
[53] Kopriva, D.; Kolias, J., A conservative staggered-grid Chebyshev multidomain method for compressible flows, J. Comput. Phys., 125, 1, 244-261 (1996) · Zbl 0847.76069
[54] Kopriva, D., A conservative staggered-grid Chebyshev multidomain method for compressible flows. II. A semi-structured method, J. Comput. Phys., 128, 2, 475-488 (1996) · Zbl 0866.76064
[55] Hindenlang, F.; Gassner, G.; Altmann, C.; Beck, A.; Staudenmaier, M.; Munz, C.-D., Explicit discontinuous Galerkin methods for unsteady problems, Comput. Fluids, 61, 86-93 (2012) · Zbl 1365.76117
[56] Toro, E., Riemann Solvers and Numerical Methods for Fluid Dynamics (2009), Springer: Springer Berlin · Zbl 1227.76006
[57] Rusanov, V., Calculation of interaction of non-steady shock waves with obstacles, J. Comput. Math. Phys. (USSR), 1, 267-279 (1961)
[58] Susanto, A.; Ivan, L.; Sterck, H. D.; Groth, C., High-order central ENO finite-volume scheme for ideal MHD, J. Comput. Phys., 250, 141-164 (2013) · Zbl 1349.65583
[59] Schiesser, W., The Numerical Method of Lines: Integration of Partial Differential Equations (1991), Academic Press · Zbl 0763.65076
[60] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77, 2, 439-471 (1988) · Zbl 0653.65072
[61] Shu, C.-W., Total-variation-diminishing time discretizations, SIAM J. Sci. Comput., 9, 6, 1073-1084 (1988) · Zbl 0662.65081
[62] Spiteri, R.; Ruuth, S., A new class of optimal high-order strong-stability-preserving time discretization methods, SIAM J. Numer. Anal., 40, 2, 469-491 (2002) · Zbl 1020.65064
[63] Courant, R.; Friedrichs, K.; Lewy, H., Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann., 100, 1, 32-74 (1928) · JFM 54.0486.01
[64] Wang, Z.-J., High-order methods for the Euler and Navier-Stokes equations on unstructured grids, Prog. Aerosp. Sci., 43, 1-41 (2007)
[65] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S., Uniformly high order accurate essentially non-oscillatory schemes, III, J. Comput. Phys., 71, 2, 231-303 (1987) · Zbl 0652.65067
[66] Beckwith, K.; Stone, J., A second-order Godunov method for multi-dimensional relativistic magnetohydrodynamics, Astrophys. J. Suppl. Ser., 193, 6-35 (2011)
[67] Brio, M.; Wu, C.-C., An upwind differencing scheme for the equations of ideal magnetohydrodynamics, J. Comput. Phys., 75, 400-422 (1988) · Zbl 0637.76125
[68] Torrilhon, M., Uniqueness conditions for Riemann problems of ideal magnetohydrodynamics, J. Plasma Phys., 69, 03, 253-276 (2003)
[69] Tóth, G., The \(\nabla \cdot \mathbf{B} = 0\) constraint in shock-capturing magnetohydrodynamics codes, J. Comput. Phys., 161, 2, 605-652 (2000) · Zbl 0980.76051
[70] Hawley, J.; Stone, J., MOCCT: A numerical technique for astrophysical MHD, Comput. Phys. Comm., 89, 1-3, 127-148 (1995) · Zbl 0923.76152
[71] Orszag, S.; Tang, C.-M., Small-scale structure of two-dimensional magnetohydrodynamic turbulence, J. Fluid Mech., 90, 129-143 (1979)
[72] Zachary, A.; Malagoli, A.; Colella, P., A higher-order Godunov method for multidimensional ideal magnetohydrodynamics, SIAM J. Sci. Comput., 15, 2, 263-284 (1994) · Zbl 0797.76063
[73] Dai, W.; Woodward, P., On the divergence-free condition and conservation laws in numerical simulations for supersonic magnetohydrodynamic flows, Astrophys. J., 494, 317-335 (1998)
[74] Jiang, G.-S.; Wu, C.-C., A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics, J. Comput. Phys., 150, 2, 561-594 (1999) · Zbl 0937.76051
[75] Londrillo, P.; del Zanna, L., High-order upwind schemes for multidimensional magnetohydrodynamics, Astrophys. J., 530, 1, 508-524 (2000)
[76] Stone, J.; Gardiner, T.; Teuben, P.; Hawley, J.; Simon, J., Athena: A new code for astrophysical MHD, Astrophys. J. Suppl. Ser., 178, 1, 137 (2008)
[77] Balsara, D.; Spicer, D., A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations, J. Comput. Phys., 149, 270-292 (1999) · Zbl 0936.76051
[78] He, P.; Tang, H., An adaptive moving mesh method for two-dimensional relativistic hydrodynamics, Commun. Comput. Phys., 11, 114-146 (2012) · Zbl 1373.76354
[79] Martí, J. M.; Müller, E., Numerical hydrodynamics in special relativity, Living Rev. Relat., 6, 7, 1-100 (2003) · Zbl 1068.83502
[80] Martí, J. M.; Müller, E., Grid-based methods in relativistic hydrodynamics and magnetohydrodynamics, Living Rev. Comput. Astrophys., 1, 3, 1-182 (2015)
[81] Rezzolla, L.; Zanotti, O., An improved exact Riemann solver for relativistic hydrodynamics, J. Fluid Mech., 449, 395 (2001) · Zbl 1009.76101
[82] Martí, J. M.; Müller, E., The Analytical solution of the Riemann problem in relativistic hydrodynamics, J. Fluid Mech., 258, 317-333 (1994) · Zbl 0806.76098
[83] Donat, R.; Font, J. A.; Ibáñez, J. M.; Marquina, A., A Flux-Split algorithm applied to relativistic flows, J. Comput. Phys., 146, 58-81 (1998) · Zbl 0930.76054
[84] Pons, J. A.; Martí, J. M.; Müller, E., The exact solution of the Riemann problem with non-zero tangential velocities in relativistic hydrodynamics, J. Fluid Mech., 422, 125-139 (2000) · Zbl 0994.76104
[85] Rezzolla, L.; Zanotti, O.; Pons, J. A., An improved exact Riemann solver for multidimensional relativistic flows, J. Fluid Mech., 479, 199-219 (2003) · Zbl 1163.76371
[86] Blandford, R.; McKee, C., Fluid dynamics of relativistic blast waves, Phys. Fluids, 19, 8, 1130-1138 (1976) · Zbl 0351.76134
[87] Noh, W. F., Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux, J. Comput. Phys., 72, 1, 78-120 (1987) · Zbl 0619.76091
[88] del Zanna, L.; Bucciantini, N., An efficient shock-capturing central-type scheme for multidimensional relativistic flows I. Hydrodynamics, Astron. Astrophys., 390, 1177-1186 (2002) · Zbl 1209.76022
[89] Dumbser, M.; Loubère, R., A simple robust and accurate a posteriori sub-cell finite volume limiter for the discontinuous galerkin method on unstructured meshes, J. Comput. Phys., 319, 163-199 (2016) · Zbl 1349.65447
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.