×

On the transfer matrix of the modified power method. (English) Zbl 07693038

Summary: The characteristics of the Transfer Matrix (TM) introduced in the modified power method (MPM) have been studied. Because it can be easily mistaken as the Fission Matrix (FM), the differences between the FM and TM are discussed. Theoretically, it can be concluded that the FM is eigenmode dependent unless a very fine mesh is adopted for the FM tally, whereas the TM is based on the coarse mesh and it can give the correct higher eigenmode solutions if the exact weight cancellation can be done. This is confirmed by comparing the analytical solutions of a one-dimensional monoenergetic homogeneous diffusion problem with the solutions of the 2-by-2 FM and TM. It is further confirmed by the numerical tests that the FM tallied with a coarse mesh cannot give correct higher mode solutions, and the FM tallied with \(i\)th mode neutron weights but on a coarse mesh can only give a correct \(i\)th mode solution. The numerical tests also confirm that the TM of various sizes, when different numbers of modes are considered, can give the first several eigenmode solutions correctly and consistently with the same fine mesh based weight cancellation. The impact of the mesh size on the results of the MPM has also been investigated. In practice, the FM only requires the fundamental mode neutron source, but the TM requires simulating the first several eigenmode fission sources explicitly. The FM and the TM can be used to accelerate the convergence of the fundamental mode. The FM uses its fundamental eigenvector to adjust the neutron weights. The TM is used to calculate the combination coefficients which can then be used to update the neutron sources. All the comparisons clearly prove that the TM is different from the FM and that the TM requires further investigation.

MSC:

82-XX Statistical mechanics, structure of matter
65-XX Numerical analysis
Full Text: DOI

References:

[1] Booth, T. E., Nucl. Sci. Eng., 143, 291-300 (2003)
[2] Booth, T. E., Nucl. Sci. Eng., 154, 48-62 (2006)
[3] Gubernatis, J. E.; Booth, T. E., J. Comput. Phys., 227, 8508-8522 (2008) · Zbl 1152.65050
[4] Booth, T. E.; Gubernatis, J. E., Monte Carlo Determination of Multiple Extremal Eigenpairs, LA-UR-07-7672 (2008), Los Alamos National Laboratory · Zbl 1152.65050
[5] Booth, T. E.; Gubernatis, J. E., Multiple Extremal Eigenpairs of Very Large Matrices By Monte Carlo Simulation, LA-UR-08-0043 (2008), Los Alamos National Laboratory · Zbl 1152.65050
[6] Booth, T. E.; Gubernatis, J. E., Improved Criticality Convergence Via a Modified Monte Carlo Power Iteration Method, Proc. M&C 2009, May 3-7 (2009), Saratoga Springs: Saratoga Springs New York
[7] Booth, T. E.; Gubernatis, J. E., Phys. Rev. E, 80, 046704 (2009)
[8] Booth, T. E.; Gubernatis, J. E., Nucl. Sci. Eng., 165, 283-291 (2010)
[9] Yamamoto, T., Ann. Nucl. Energy, 36, 7-14 (2009)
[10] Shi, B.; Petrovic, B., Ann. Nucl. Energy, 38, 781-787 (2011)
[11] Shi, B.; Petrovic, B., Nucl. Sci. Eng., 172, 138-150 (2012)
[12] P. Zhang, H. Lee, D. Lee, Extension of Tom Booth’s Modified Power Method for Higher Eigen Modes, Trans. KNS Spring Meeting, Jeju, Korea, May 7-8, 2015.
[13] P. Zhang, H. Lee, D. Lee, The Implementation of Modified Power Iteration Method in Continuous Energy Monte Carlo Simulation, Proc. ANS 2015 Annual Meeting, San Antonio, TX, June 7-11, 2015.
[14] P. Zhang, H. Lee, D. Lee, Stabilization Technique of Modified Power Iteration Method for Monte Carlo Simulation of Neutron Transport Eigenvalue Problem, Proc. M&C 2015, Nashville, TN, April 19-23, 2015.
[15] Zhang, P.; Lee, H.; Lee, D., J. Comput. Phys., 305, 387-402 (2016) · Zbl 1349.65135
[16] Zhang, P.; Lee, H.; Lee, D., J. Comput. Phys., 320, 17-32 (2016) · Zbl 1349.65136
[17] Zhang, P.; Lee, H.; Lee, D., Nucl. Eng. Tech., 49, 17-28 (2017)
[18] Zhang, P.; Lee, H.; Lee, D., J. Comput. Phys., 344, 440-450 (2017)
[19] Tuttelberg, K.; Dufek, J., Ann. Nucl. Energy, 72, 151-155 (2014)
[20] Carney, S. E.; Brown, F. B.; Kiedrowski, B. C.; Martin, W. R., Ann. Nucl. Energy, 73, 423-431 (2014)
[21] Brown, F. B.; Carney, S. E.; Kiedrowski, B. C.; Martin, W. R., Fission Matrix Capability for MCNP Monte Carlo, Proc. SNA + MC 2013, Paris, France, October 27-31, LA-UR-13-26962 (2013), Los Alamos National Laboratory
[22] Colin, J.; Veit Max, D., Eigenfunction Decomposition of Reactor Perturbations and Transitions using MCNP Monte Carlo, Report LA-UR-13-26449, Talk LA-UR-13-26464 (2013), Los Alamos National Laboratory
[23] Carney, S. E.; Brown, F. B.; Kiedrowski, B. C.; Martin, W. R., Higher-Mode Applications of Fission Matrix Capability for MCNP, Report LA-UR-13-27078, Talk LA-UR-13-26615 (2013), Los Alamos National Laboratory
[24] F.B. Brown, S.E. Carney, B.C. Kiedrowski, W.R. Martin, Fission Matrix Capability for MCNP, Part I -Theory, Proc. M&C 2013, Sun Valley, Idaho, May 5-9, 2013.
[25] F.B. Brown, S.E. Carney, B.C. Kiedrowski, W.R. Martin, Fission Matrix Capability for MCNP, Part II -Applications, Proc. M&C 2013, Sun Valley, Idaho, May 5-9, 2013.
[26] Carney, S. E.; Brown, F. B.; Kiedrowski, B. C.; Martin, W. R., Fission Matrix Capability for MCNP Monte Carlo, LA-UR-12-24533 (2012), Los Alamos National Laboratory
[27] Miao, J.; Forget, B.; Smith, K., Ann. Nucl. Energy, 92, 81-95 (2016)
[28] Nowak, M.; Miao, J.; Dumonteil, E.; Forget, B.; Onillon, A.; Smith, K. S.; Zoia, A., Ann. Nucl. Energy, 94, 856-868 (2016)
[29] Sutton, T. M., Nucl. Sci. Eng., 185, 174-183 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.