×

Explicit formulation of second and third order optical nonlinearity in the FDTD framework. (English) Zbl 07693035

Summary: The finite-difference time-domain (FDTD) method is a flexible and powerful technique for rigorously solving Maxwell’s equations. However, three-dimensional optical nonlinearity in current commercial and research FDTD softwares requires solving iteratively an implicit form of Maxwell’s equations over the entire numerical space and at each time step. Reaching numerical convergence demands significant computational resources and practical implementation often requires major modifications to the core FDTD engine. In this paper, we present an explicit method to include second and third order optical nonlinearity in the FDTD framework based on a nonlinear generalization of the Lorentz dispersion model. A formal derivation of the nonlinear Lorentz dispersion equation is equally provided, starting from the quantum mechanical equations describing nonlinear optics in the two-level approximation. With the proposed approach, numerical integration of optical nonlinearity and dispersion in FDTD is intuitive, transparent, and fully explicit. A strong-field formulation is also proposed, which opens an interesting avenue for FDTD-based modelling of the extreme nonlinear optics phenomena involved in laser filamentation and femtosecond micromachining of dielectrics.

MSC:

78-XX Optics, electromagnetic theory
65-XX Numerical analysis

References:

[1] Taflove, A.; Hagness, S., Computational Electrodynamics: The Finite-difference Time-domain Method (2005), Artech House
[2] Taflove, A.; Oskooi, A.; Johnson, S., Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology (2013), Artech House
[3] Yee, K., Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas Propag., 14, 302-307 (1966) · Zbl 1155.78304
[4] Verboncoeur, J. P., Particle simulation of plasmas: review and advances, Plasma Phys. Control. Fusion, 47, A231-A260 (2005)
[5] Varin, C.; Peltz, C.; Brabec, T.; Fennel, T., Attosecond plasma wave dynamics in laser-driven cluster nanoplasmas, Phys. Rev. Lett., 108, 175007 (2012)
[6] Peltz, C.; Varin, C.; Brabec, T.; Fennel, T., Fully microscopic analysis of laser-driven finite plasmas using the example of clusters, New J. Phys., 14, 065011 (2012)
[7] Varin, C.; Peltz, C.; Brabec, T.; Fennel, T., Light wave driven electron dynamics in clusters, Ann. Phys., 526, 135-156 (2014)
[8] Peltz, C.; Varin, C.; Brabec, T.; Fennel, T., Time-resolved x-ray imaging of anisotropic nanoplasma expansion, Phys. Rev. Lett., 113, 133401 (2014)
[9] Goorjian, P.; Taflove, A.; Joseph, R.; Hagness, S., Computational modeling of femtosecond optical solitons from Maxwell’s equations, IEEE J. Quantum Electron., 28, 2416-2422 (1992)
[10] Greene, J. H.; Taflove, A., General vector auxiliary differential equation finite-difference time-domain method for nonlinear optics, Opt. Express, 14, 8305 (2006)
[11] Maksymov, I. S.; Sukhorukov, A. A.; Lavrinenko, A. V.; Kivshar, Y. S., Comparative study of FDTD-adopted numerical algorithms for Kerr nonlinearities, IEEE Antennas Wirel. Propag. Lett., 10, 143-146 (2011)
[12] Gordon, D.; Helle, M.; Peñano, J., Fully explicit nonlinear optics model in a particle-in-cell framework, J. Comput. Phys., 250, 388-402 (2013)
[13] Varin, C.; Bart, G.; Emms, R.; Brabec, T., Saturable Lorentz model for fully explicit three-dimensional modeling of nonlinear optics, Opt. Express, 23, 2686-2695 (2015)
[14] Jackson, J. D., Classical Electrodynamics (1998), Wiley · Zbl 0913.00013
[15] Fowles, G., (Introduction to Modern Optics. Introduction to Modern Optics, Dover Books on Physics Series (1975), Dover Publications)
[16] Boyd, R., Nonlinear Optics (2008), Elsevier Science
[17] Sellmeier, Zur Erklärung der abnormen Farbenfolge im Spectrum einiger Substanzen, Ann. Phys., 219, 272-282 (1871)
[18] Scalora, M.; Vincenti, M. A.; de Ceglia, D.; Cojocaru, C. M.; Grande, M.; Haus, J. W., Nonlinear Duffing oscillator model for third harmonic generation, J. Opt. Soc. Amer. B, 32, 2129 (2015)
[19] Fejer, M.; Magel, G.; Jundt, D.; Byer, R., Quasi-phase-matched second harmonic generation: tuning and tolerances, IEEE J. Quantum Electron., 28, 2631-2654 (1992)
[20] Byer, R. L., Quasi-Phasematched Nonlinear Interactions and Devices, J. Nonlinear Opt. Phys. Mater., 06, 549-592 (1997)
[21] Zelmon, D. E.; Small, D. L.; Jundt, D., Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.
[22] Lepetit, T.; Kanté, B., Nonlinear optics: Metamaterial quasi-phase matching, Nature Photon., 9, 148-150 (2015)
[23] Segal, N.; Keren-Zur, S.; Hendler, N.; Ellenbogen, T., Controlling light with metamaterial-based nonlinear photonic crystals, Nature Photon., 9, 180-184 (2015)
[24] Linden, S.; Niesler, F. B.P.; Förstner, J.; Grynko, Y.; Meier, T.; Wegener, M., Collective effects in second-harmonic generation from split-ring-resonator arrays, Phys. Rev. Lett., 109, 1-5 (2012)
[25] O’Brien, K.; Suchowski, H.; Rho, J.; Salandrino, A.; Kante, B.; Yin, X.; Zhang, X., Predicting nonlinear properties of metamaterials from the linear response, Nature Mater., 14, 379-383 (2015)
[26] Niesler, F. B.; Feth, N.; Linden, S.; Niegemann, J.; Gieseler, J.; Busch, K.; Wegener, M., Second-harmonic generation from split-ring resonators on a GaAs substrate, Opt. Lett., 34, 1997 (2009)
[27] Niesler, F. B.P.; Feth, N.; Linden, S.; Wegener, M., Second-harmonic optical spectroscopy on split-ring-resonator arrays, Opt. Lett., 36, 1533 (2011)
[28] Busch, K.; von Freymann, G.; Linden, S.; Mingaleev, S.; Tkeshelashvili, L.; Wegener, M., Periodic nanostructures for photonics, Phys. Rep., 444, 101-202 (2007)
[29] Etchegoin, P. G.; Le Ru, E. C.; Meyer, M., Erratum: “An analytic model for the optical properties of gold” [J. Chem. Phys. 125, 164705 (2006)], J. Chem. Phys., 127, 1 (2007)
[30] Aspnes, D. E.; Kelso, S. M.; Logan, R. A.; Bhat, R., Optical properties of \(Al{}_x Ga{}_{1 - x}As\), J. Appl. Phys., 60, 754-767 (1986)
[31] Jellison, G., Optical functions of GaAs, GaP, and Ge determined by two-channel polarization modulation ellipsometry, Opt. Mater., 1, 151-160 (1992)
[32] Skauli, T.; Kuo, P. S.; Vodopyanov, K. L.; Pinguet, T. J.; Levi, O.; Eyres, L. A.; Harris, J. S.; Fejer, M. M.; Gerard, B.; Becouarn, L.; Lallier, E., Improved dispersion relations for GaAs and applications to nonlinear optics, J. Appl. Phys., 94, 6447-6455 (2003)
[33] Johnson, P. B.; Christy, R. W., Optical constants of the noble metals, Phys. Rev. B, 6, 4370-4379 (1972)
[34] Zeng, Y.; Hoyer, W.; Liu, J.; Koch, S. W.; Moloney, J. V., Classical theory for second-harmonic generation from metallic nanoparticles, Phys. Rev. B, 79, 235109 (2009)
[35] Liu, J.; Brio, M.; Zeng, Y.; Zakharian, A. R.; Hoyer, W.; Koch, S. W.; Moloney, J. V., Generalization of the {FDTD} algorithm for simulations of hydrodynamic nonlinear Drude model, J. Comput. Phys., 229, 5921-5932 (2010) · Zbl 1425.76318
[36] Agrawal, G. P., Nonlinear Fiber Optics (2001), Academic Press: Academic Press San Diego, CA
[37] Couairon, A.; Brambilla, E.; Corti, T.; Majus, D.; de J. Ramírez-Góngora, O.; Kolesik, M., Eur. Phys. J. Spec. Top., 199, 5-76 (2011)
[38] Kolesik, M.; Moloney, J. V., Modeling and simulation techniques in extreme nonlinear optics of gaseous and condensed media, Rep. Progr. Phys., 77, 016401 (2014)
[39] Arber, T. D.; Bennett, K.; Brady, C. S.; Lawrence-Douglas, A.; Ramsay, M. G.; Sircombe, N. J.; Gillies, P.; Evans, R. G.; Schmitz, H.; Bell, A. R.; Ridgers, C. P., Contemporary particle-in-cell approach to laser-plasma modelling, Plasma Phys. Control. Fusion, 57, 11, 113001 (2015)
[40] Malitson, I. H., Interspecimen comparison of the refractive index of fused silica, J. Opt. Soc. Amer., 55, 1205 (1965)
[41] Fujii, M.; Tahara, M.; Sakagami, I.; Freude, W.; Russer, P., High-order FDTD and auxiliary differential equation formulation of optical pulse propagation in 2-D Kerr and Raman nonlinear dispersive media, IEEE J. Quantum Electron., 40, 175-182 (2004)
[42] Goorjian, P. M.; Taflove, A., Direct time integration of Maxwells equations in nonlinear dispersive media for propagation and scattering of femtosecond electromagnetic solitons, Opt. Lett., 17, 180 (1992)
[43] Bergé, L.; Skupin, S.; Nuter, R.; Kasparian, J.; Wolf, J.-P., Ultrashort filaments of light in weakly ionized, optically transparent media, Rep. Progr. Phys., 70, 1633-1713 (2007)
[44] Couairon, A.; Mysyrowicz, A., Femtosecond filamentation in transparent media, Phys. Rep., 441, 47-189 (2007)
[45] Kolesik, M.; Brown, J. M.; Teleki, A.; Jakobsen, P.; Moloney, J. V.; Wright, E. M., Metastable electronic states and nonlinear response for high-intensity optical pulses, Optica, 1, 323 (2014)
[46] Bethe, H.; Salpeter, E., Quantum Mechanics of One- and Two-electron Atoms (1957), Springer · Zbl 0089.21006
[47] Siegman, A., Lasers (1986), University Science Books
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.