×

Parametric level-set inverse problems with stochastic background estimation. (English) Zbl 07691092

Summary: We study parametric shape reconstruction inverse problems in which the object of interest is embedded in a heterogeneous background medium that is known only approximately. We model the background medium as a Gaussian random field and pose shape reconstruction as a stochastic programming problem in which we seek to minimize the expected value, with respect to the background field, of a stochastic objective function. We develop a computationally efficient algorithm based on the sample average approximation that reduces the effect of uncertainty in the background medium on shape recovery. We demonstrate that by using accelerated stochastic gradient descent, we can apply our method to large-scale problems. The capabilities of our method are demonstrated on a simple two-dimensional model problem and in a more demanding application to a three-dimensional inverse conductivity problem in geophysical imaging.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
90Cxx Mathematical programming
65Nxx Numerical methods for partial differential equations, boundary value problems

Software:

Adam; GitHub; RMSprop; Julia; jInv

References:

[1] Aghasi, A.; Kilmer, M.; Miller, E. L., Parametric level set methods for inverse problems, SIAM J. Imaging Sci., 4, 618-50 (2011) · Zbl 1219.65053 · doi:10.1137/100800208
[2] Aravkin, A. Y.; Van Leeuwen, T., Estimating nuisance parameters in inverse problems, Inverse Problems, 28 (2012) · Zbl 1253.49021 · doi:10.1088/0266-5611/28/11/115016
[3] Betz, W.; Papaioannou, I.; Straub, D., Numerical methods for the discretization of random fields by means of the Karhunen-Loève expansion, Comput. Methods Appl. Mech. Eng., 271, 109-29 (2014) · Zbl 1296.65191 · doi:10.1016/j.cma.2013.12.010
[4] Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, V., Julia: a fresh approach to numerical computing, SIAM Rev., 59, 65-98 (2017) · Zbl 1356.68030 · doi:10.1137/141000671
[5] Binley, A.; Kemna, A., DC Resistivity and Induced Polarization Methods, pp 129-56 (2005), Dordrecht: Springer Netherlands, Dordrecht
[6] Bottou, L., Large-scale machine learning with stochastic gradient descent, pp 177-86 (2010), Physica-Verlag HD · Zbl 1436.68293
[7] Bregman, N. D.; Bailey, R. C.; Chapman, C., Crosshole seismic tomography, Geophyics, 54, 200-15 (1989) · doi:10.1190/1.1442644
[8] Burger, M.; Osher, S. J., A survey on level set methods for inverse problems and optimal design, Eur. J. Appl. Math., 16, 263-301 (2005) · Zbl 1091.49001 · doi:10.1017/S0956792505006182
[9] Cardiff, M.; Kitanidis, P. K., Bayesian inversion for facies detection: an extensible level set framework, Water Resour. Res., 45, 1-15 (2009) · doi:10.1029/2008WR007675
[10] Day-Lewis, F.; Versteeg, R.; Casey, C., Object-based inversion of crosswell radar tomography data to monitor vegetable oil injection experiments, J. Environ. Eng. Geophys., 9, 53-113 (2004) · doi:10.4133/JEEG9.2.63
[11] Diwekar, U., Optimization under uncertainty, Introduction to Applied Optimization (2003), Boston, MA: Springer, Boston, MA · Zbl 1043.90001
[12] Doel, K. V D.; Ascher, U., On level set regularization for highly ill-posed distributed parameter estimation problems, J. Comput. Phys., 216, 707-23 (2006) · Zbl 1097.65112 · doi:10.1016/j.jcp.2006.01.022
[13] Ghanem, R. G.; Spanos, P. D., Stochastic Finite Elements: A Spectral Approach (1991), Berlin: Springer, Berlin · Zbl 0722.73080
[14] Haber, E., Computational Methods in Geophysical Electromagnetics (2015), Philadelphia, PA: SIAM, Philadelphia, PA · Zbl 1304.86001
[15] Haber, E.; Chung, M.; Herrmann, F., An effective method for parameter estimation with PDE constraints with multiple right-hand sides, SIAM J. Optim., 22, 739-57 (2012) · Zbl 1253.35220 · doi:10.1137/11081126X
[16] Hinton, G2014Lecture 6e on neural networks (rmsprop: divide the gradient by a running average of its recent magnitude)(available at: www.cs.toronto.edu/tijmen/csc321/slides/lecture_slides_lec6.pdf)
[17] Horesh, L.; Haber, E., A second order discretization of Maxwell’s equations in the quasi-static regime on OcTree grids, SIAM J. Sci. Comput., 33, 2805-22 (2011) · Zbl 1232.65019 · doi:10.1137/100798508
[18] Hoversten, G. M.; Schwarzbach, C.; Belliveau, P.; Haber, E.; Shekhtman, R., Borehole to surface electromagnetic monitoring of hydraulic fractures (2017)
[19] Iglesias, M. A.; Lu, Y.; Stuart, A. M., A Bayesian level set method for geometric inverse problems, Interfaces Free Boundaries, 18, 181-217 (2016) · Zbl 1353.65050 · doi:10.4171/IFB/362
[20] Kadu, A.; van Leeuwen, T.; Batenburg, K. J.; Kropatsch, W. G.; Artner, N. M.; Janusch, I., A parametric level-set method for partially discrete tomography, Discrete Geometry for Computer Imagery, pp 122-34 (2017), Cham: Springer International Publishing, Cham · Zbl 1430.94024
[21] Kadu, A.; van Leeuwen, T.; Mulder, W. A., Salt reconstruction in full-waveform inversion with a parametric level-set method, IEEE Trans. Comput. Imaging, 3, 305-15 (2017) · doi:10.1109/TCI.2016.2640761
[22] Karpathy, A2017A peek at trends in machine learning(available at: https://karpathy.medium.com/a-peek-at-trends-in-machine-learning-ab8a1085a106)
[23] Kingma, D. P.; Ba, J. L.; Bengio, Y.; LeCun, Y., Adam: a method for stochastic optimization (2015)
[24] Lecun, Y.; Bengio, Y.; Hinton, G., Deep learning, Nature, 521, 436-44 (2015) · doi:10.1038/nature14539
[25] Li, Y.; Oldenburg, D. W., 3-D inversion of magnetic data, Geophysics, 61, 394-408 (1996) · doi:10.1190/1.1443968
[26] Liu, D.; Khambampati, A. K.; Du, J., A parametric level set method for electrical impedance tomography, IEEE Trans. Med. Imaging, 37, 451-60 (2018) · doi:10.1109/TMI.2017.2756078
[27] McMillan, M. S.; Schwarzbach, C.; Haber, E.; Oldenburg, D., Multiple body parametric inversion of frequency- and time-domain airborne electromagnetics, SEG Technical Program Expanded Abstracts 2016, pp 846-51 (2016)
[28] McMillan, M. S.; Schwarzbach, C.; Haber, E.; Oldenburg, D. W., Three dimensional parametric hybrid inversion of airborne time-domain electromagnetic data, Geophyics, 80, K25-K36 (2014) · doi:10.1190/geo2015-0141.1
[29] Murphy, K. P., Probabilistic Machine Learning: An Introduction (2022), Cambridge, MA: MIT Press, Cambridge, MA · Zbl 1498.68002
[30] Nocedal, J.; Wright, S. J., Numerical Optimization (1999) · Zbl 0930.65067
[31] Okko, O., Vertical increase in seismic velocity with depth in shallow crystalline bedrock, J. Appl. Geophys., 32, 335-45 (1994) · doi:10.1016/0926-9851(94)90032-9
[32] Osher, S. J.; Sethian, J. A., Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 12-49 (1988) · Zbl 0659.65132 · doi:10.1016/0021-9991(88)90002-2
[33] Polyak, B. T.; Juditsky, A. B., Acceleration of stochastic approximation by averaging, SIAM J. Control Optim., 30, 838-55 (1992) · Zbl 0762.62022 · doi:10.1137/0330046
[34] Prieto, K.; Dorn, O., Sparsity and level set regularization for diffuse optical tomography using a transport model in 2D, Inverse Problems, 33 (2017) · Zbl 1361.65104 · doi:10.1088/0266-5611/33/1/014001
[35] Reddi, S. J.; Kale, S.; Kumar, S., On the convergence of Adam and beyond (2018), OpenReview.net
[36] Robbe, P2017GaussianRandomFields(available at: https://github.com/PieterjanRobbe/GaussianRandomFields.jl)
[37] Roosta-khorasani, F.; Doel, K. V D.; Ascher, U., Stochastic algorithms for inverse problems involving PDEs and many measurements, SIAM J. Sci. Comput., 36, S3-S22 (2014) · Zbl 1307.65158 · doi:10.1137/130922756
[38] Ruthotto, L.; Treister, E.; Haber, E., jInv-a flexible Julia package for PDE parameter estimation, SIAM J. Sci. Comput., 39, 702-22 (2017) · Zbl 1373.86013 · doi:10.1137/16M1081063
[39] Santosa, F., A level-set approach for inverse problems involving obstacles, ESAIM: Control Optim. Calc. Var., 1, 17-33 (1996) · Zbl 0870.49016 · doi:10.1051/cocv:1996101
[40] Shapiro, A.; Dentcheva, D.; Ruszczyński, A., Lectures On Stochastic Programming: Modeling and Theory (2009), Philadelphia, PA: SIAM, Philadelphia, PA · Zbl 1183.90005
[41] Wallace, S. W.; Ziemba, W. T., Applications of Stochastic Programming (2005), Philadelphia, PA: SIAM, Philadelphia, PA · Zbl 1068.90002
[42] Ward, S. H.; Hohmann, G. W.; Nabighian, M. N., Electromagnetic theory for geophysical applications, Electromagnetic Methods in Applied Geophysics: Volume 1, Theory, pp 131-311 (1987), Houston, TX: Society of Exploration Geophysicists
[43] Zhang, Z., Improved Adam optimizer for deep neural networks, pp 1-2 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.