×

Quantum codes, CFTs, and defects. (English) Zbl 07690581

Summary: We give a general construction relating Narain rational conformal field theories (RCFTs) and associated 3d Chern-Simons (CS) theories to quantum stabilizer codes. Starting from an abelian CS theory with a fusion group consisting of \(n\) even-order factors, we map a boundary RCFT to an \(n\)-qubit quantum code. When the relevant ’t Hooft anomalies vanish, we can orbifold our RCFTs and describe this gauging at the level of the code. Along the way, we give CFT interpretations of the code subspace and the Hilbert space of qubits while mapping error operations to CFT defect fields.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T45 Topological field theories in quantum mechanics
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations

References:

[1] Almheiri, A.; Dong, X.; Harlow, D., Bulk Locality and Quantum Error Correction in AdS/CFT, JHEP, 04, 163 (2015) · Zbl 1388.81095 · doi:10.1007/JHEP04(2015)163
[2] A.Y. Kitaev, Fault tolerant quantum computation by anyons, Annals Phys.303 (2003) 2 [quant-ph/9707021] [INSPIRE]. · Zbl 1012.81006
[3] J. Haah, Local stabilizer codes in three dimensions without string logical operators, Phys. Rev. A83 (2011) 042330 [arXiv:1101.1962] [INSPIRE].
[4] M. Freedman and M.B. Hastings, Building manifolds from quantum codes, arXiv e-prints [doi:10.48550/arXiv.2012.02249].
[5] Dolan, L.; Goddard, P.; Montague, P., Conformal field theories, representations and lattice constructions, Commun. Math. Phys., 179, 61 (1996) · Zbl 0878.17025 · doi:10.1007/BF02103716
[6] Dymarsky, A.; Shapere, A., Quantum stabilizer codes, lattices, and CFTs, JHEP, 21, 160 (2020)
[7] A. Dymarsky and A. Shapere, Solutions of modular bootstrap constraints from quantum codes, Phys. Rev. Lett.126 (2021) 161602 [arXiv:2009.01236] [INSPIRE].
[8] D. Gottesman, A Theory of fault tolerant quantum computation, Phys. Rev. A57 (1998) 127 [quant-ph/9702029] [INSPIRE].
[9] J. Frohlich, J. Fuchs, I. Runkel and C. Schweigert, Defect lines, dualities, and generalised orbifolds, in the proceedings of 16th International Congress on Mathematical Physics, (2009) [doi:10.1142/9789814304634_0056] [arXiv:0909.5013] [INSPIRE].
[10] A. Davydov, Unphysical diagonal modular invariants, arXiv e-prints [doi:10.48550/arXiv.1412.8505]. · Zbl 1330.18011
[11] J. Fuchs, I. Runkel and C. Schweigert, TFT construction of RCFT correlators. 3. Simple currents, Nucl. Phys. B694 (2004) 277 [hep-th/0403157] [INSPIRE]. · Zbl 1151.81383
[12] A. Kapustin and N. Saulina, Surface operators in 3d Topological Field Theory and 2d Rational Conformal Field Theory, arXiv:1012.0911 [PI-STRINGS-195] [INSPIRE]. · Zbl 1248.81206
[13] Komargodski, Z.; Ohmori, K.; Roumpedakis, K.; Seifnashri, S., Symmetries and strings of adjoint QCD_2, JHEP, 03, 103 (2021) · Zbl 1461.81143 · doi:10.1007/JHEP03(2021)103
[14] Moore, GW; Seiberg, N., Classical and Quantum Conformal Field Theory, Commun. Math. Phys., 123, 177 (1989) · Zbl 0694.53074 · doi:10.1007/BF01238857
[15] A. Kitaev, Anyons in an exactly solved model and beyond, Annals Phys.321 (2006) 2 [cond-mat/0506438] [INSPIRE]. · Zbl 1125.82009
[16] V. Kac, Vertex algebras for beginners, American Mathematical Society (1996) [INSPIRE]. · Zbl 0861.17017
[17] Wall, CTC, Quadratic forms on finite groups, and related topics, Topology, 2, 281 (1963) · Zbl 0215.39903 · doi:10.1016/0040-9383(63)90012-0
[18] L. Wang and Z. Wang, In and around Abelian anyon models, J. Phys. A53 (2020) 505203 [arXiv:2004.12048] [INSPIRE]. · Zbl 1519.81499
[19] P.H. Ginsparg, Applied conformal field theory, in the proceedings of Les Houches Summer School in Theoretical Physics: Fields, Strings, Critical Phenomena, (1988) [hep-th/9108028] [INSPIRE].
[20] Di Francesco, P.; Mathieu, P.; Senechal, D., Conformal Field Theory (1997), New York: Springer-Verlag, New York · Zbl 0869.53052 · doi:10.1007/978-1-4612-2256-9
[21] Y. Tachikawa, TASI 2019 Lectures on Anomalies and Topological Phases, https://member.ipmu.jp/yuji.tachikawa/lectures/2019-top-anom/ (2019).
[22] Y.-H. Lin and S.-H. Shao, Anomalies and Bounds on Charged Operators, Phys. Rev. D100 (2019) 025013 [arXiv:1904.04833] [INSPIRE].
[23] R. Thorngren and Y. Wang, Fusion Category Symmetry II: Categoriosities at c = 1 and Beyond, arXiv:2106.12577 [INSPIRE].
[24] Kitaev, AY, Quantum computations: algorithms and error correction, Russ. Math. Surv., 52, 1191 (1997) · Zbl 0917.68063 · doi:10.1070/RM1997v052n06ABEH002155
[25] S. Simon, Topological Quantum: Lecture Notes and Proto-Book, https://www-thphys.physics. ox.ac.uk/people/SteveSimon/topological2020/TopoBookOct27hyperlink.pdf (2020).
[26] Verlinde, EP, Fusion Rules and Modular Transformations in 2D Conformal Field Theory, Nucl. Phys. B, 300, 360 (1988) · Zbl 1180.81120 · doi:10.1016/0550-3213(88)90603-7
[27] V.B. Petkova and J.-B. Zuber, Conformal boundary conditions and what they teach us, in the proceedings of Eotvos Summer School in Physics: Nonperturbative QFT Methods and Their Applications, (2000), p. 1-35 [doi:10.1142/9789812799968_0001] [hep-th/0103007] [INSPIRE]. · Zbl 0990.81108
[28] D. Gaiotto, Open Verlinde line operators, arXiv:1404.0332 [INSPIRE].
[29] Buican, M.; Gromov, A., Anyonic Chains, Topological Defects, and Conformal Field Theory, Commun. Math. Phys., 356, 1017 (2017) · Zbl 1379.81070 · doi:10.1007/s00220-017-2995-6
[30] Chang, C-M, Topological Defect Lines and Renormalization Group Flows in Two Dimensions, JHEP, 01, 026 (2019) · Zbl 1409.81134 · doi:10.1007/JHEP01(2019)026
[31] Buican, M.; Radhakrishnan, R., Galois orbits of TQFTs: symmetries and unitarity, JHEP, 01, 004 (2022) · Zbl 1521.81337 · doi:10.1007/JHEP01(2022)004
[32] J.A. Harvey, Y. Hu and Y. Wu, Galois Symmetry Induced by Hecke Relations in Rational Conformal Field Theory and Associated Modular Tensor Categories, J. Phys. A53 (2020) 334003 [arXiv:1912.11955] [INSPIRE]. · Zbl 1519.81448
[33] Y. Tachikawa, Topological modular forms and the absence of a heterotic global anomaly, PTEP2022 (2022) 04A107 [arXiv:2103.12211] [INSPIRE]. · Zbl 1497.83050
[34] Stolz, S.; Teichner, P., What is an Elliptic Object?, Lond. Math. Soc. Lec. Note Ser., 308, 247 (2004)
[35] S. Stolz and P. Teichner, Supersymmetric field theories and generalized cohomology, arXiv:1108.0189 [INSPIRE]. · Zbl 1257.55003
[36] M. Buican, A. Dymarsky and R. Radhakrishnan Qudit Codes and CFTs, to appear.
[37] Dymarsky, A.; Sharon, A., Non-rational Narain CFTs from codes over F_4, JHEP, 11, 016 (2021) · Zbl 1521.81302 · doi:10.1007/JHEP11(2021)016
[38] Müger, M., On the structure of modular categories, Proc. Lond. Math. Soc., 87, 291 (2003) · Zbl 1037.18005 · doi:10.1112/S0024611503014187
[39] Maloney, A.; Witten, E., Averaging over Narain moduli space, JHEP, 10, 187 (2020) · Zbl 1456.83067 · doi:10.1007/JHEP10(2020)187
[40] Kong, L.; Runkel, I., Cardy algebras and sewing constraints. I, Commun. Math. Phys., 292, 871 (2009) · Zbl 1214.81251 · doi:10.1007/s00220-009-0901-6
[41] Henriksson, J.; Kakkar, A.; McPeak, B., Classical codes and chiral CFTs at higher genus, JHEP, 05, 159 (2022) · Zbl 1522.81502 · doi:10.1007/JHEP05(2022)159
[42] Collier, S.; Mazac, D.; Wang, Y., Bootstrapping boundaries and branes, JHEP, 02, 019 (2023) · Zbl 1541.81158 · doi:10.1007/JHEP02(2023)019
[43] Kaidi, J., Higher central charges and topological boundaries in 2+1-dimensional TQFTs, SciPost Phys., 13, 067 (2022) · doi:10.21468/SciPostPhys.13.3.067
[44] Y. Choi et al., Noninvertible duality defects in 3+1 dimensions, Phys. Rev. D105 (2022) 125016 [arXiv:2111.01139] [INSPIRE].
[45] J. Kaidi, K. Ohmori and Y. Zheng, Kramers-Wannier-like Duality Defects in (3+1)D Gauge Theories, Phys. Rev. Lett.128 (2022) 111601 [arXiv:2111.01141] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.