×

The existence of a weak solution to volume preserving mean curvature flow in higher dimensions. (English) Zbl 07687726

Summary: In this paper, we construct a family of integral varifolds, which is a global weak solution to the volume preserving mean curvature flow in the sense of \(L^2\)-flow. This flow is also a distributional BV-solution for a short time, when the perimeter of the initial data is sufficiently close to that of a ball with the same volume. To construct the flow, we use the Allen-Cahn equation with a non-local term motivated by studies of Mugnai, Seis, and Spadaro, and Kim and Kwon. We prove the convergence of the solution for the Allen-Cahn equation to the family of integral varifolds with only natural assumptions for the initial data.

MSC:

35D30 Weak solutions to PDEs
35K93 Quasilinear parabolic equations with mean curvature operator
53E10 Flows related to mean curvature

References:

[1] Almgren, F.; Taylor, JE; Wang, L., Curvature-driven flows: a variational approach, SIAM J. Control. Optim., 31, 387-438 (1993) · Zbl 0783.35002 · doi:10.1137/0331020
[2] Ambrosio, L.; Fusco, N.; Pallara, D., Functions of Bounded Variation and Free Discontinuity Problems (2000), New York: The Clarendon Press, Oxford University Press, New York · Zbl 0957.49001
[3] Antonopoulou, D.; Karali, G.; Sigal, IM, Stability of spheres under volume-preserving mean curvature flow, Dyn. Partial Differ. Equ., 7, 327-344 (2010) · Zbl 1219.35132 · doi:10.4310/DPDE.2010.v7.n4.a3
[4] Athanassenas, M., Volume-preserving mean curvature flow of rotationally symmetric surfaces, Comment. Math. Helv., 72, 52-66 (1997) · Zbl 0873.35033 · doi:10.1007/PL00000366
[5] Brakke, KA, The Motion of a Surface by Its Mean Curvature (1978), Princeton: Princeton University Press, Princeton · Zbl 0386.53047
[6] Brassel, M.; Bretin, E., A modified phase field approximation for mean curvature flow with conservation of the volume, Math. Methods Appl. Sci., 34, 1157-1180 (2011) · Zbl 1235.49082 · doi:10.1002/mma.1426
[7] Bronsard, L.; Stoth, B., Volume-preserving mean curvature flow as a limit of a nonlocal Ginzburg-Landau equation, SIAM J. Math. Anal., 28, 769-807 (1997) · Zbl 0874.35009 · doi:10.1137/S0036141094279279
[8] Chen, X.; Hilhorst, D.; Logak, E., Mass conserving Allen-Cahn equation and volume preserving mean curvature flow, Interfaces Free Bound, 12, 527-549 (2010) · Zbl 1219.35018 · doi:10.4171/IFB/244
[9] Delfour, MC; Zolésio, JP, Shape analysis via oriented distance functions, J. Funct. Anal., 123, 129-201 (1994) · Zbl 0814.49032 · doi:10.1006/jfan.1994.1086
[10] Escher, J.; Simonett, G., The volume preserving mean curvature flow near spheres, Proc. Am. Math. Soc., 126, 2789-2796 (1998) · Zbl 0909.53043 · doi:10.1090/S0002-9939-98-04727-3
[11] Evans, LC; Gariepy, RF, Measure Theory and Fine Properties of Functions (2015), Boca Raton: CRC Press, Boca Raton · Zbl 1310.28001 · doi:10.1201/b18333
[12] Fischer, J.,Hensel, S.,Laux, T.,Simon, T.: The local structure of the energy landscape in multiphase mean curvature flow: Weak-strong uniqueness and stability of evolutions, arXiv preprint arXiv:2003.05478, 2020
[13] Fusco, N., The classical isoperimetric theorem, Rend. Accad. Sci. Fis. Mat. Napoli., 71, 63-107 (2004) · Zbl 1096.49024
[14] Fusco, N.; Maggi, F.; Pratelli, A., The sharp quantitative isoperimetric inequality, Ann. Math., 168, 941-980 (2008) · Zbl 1187.52009 · doi:10.4007/annals.2008.168.941
[15] Gage, M., On an area-preserving evolution equation for plane curves, Nonlinear problems in geometry (Mobile, Ala.,: Contemp. Math., 51 Amer. Math. Soc. Providence, R I1986, 51-62, 1985 · Zbl 0608.53002
[16] Giusti, E., Minimal Surfaces and Functions of Bounded Variation (1984), Boston: Birkhäuser, Boston · Zbl 0545.49018 · doi:10.1007/978-1-4684-9486-0
[17] Golovaty, D., The volume-preserving motion by mean curvature as an asymptotic limit of reaction-diffusion equations, Quart. Appl. Math., 55, 243-298 (1997) · Zbl 0878.35059 · doi:10.1090/qam/1447577
[18] Hensel, S., Laux, T.: A new varifold solution concept for mean curvature flow: convergence of the Allen-Cahn equation and weak-strong uniqueness, arXiv preprint arXiv:2109.04233, 2021
[19] Huisken, G., The volume preserving mean curvature flow, J. Reine Angew. Math., 382, 35-48 (1987) · Zbl 0621.53007
[20] Huisken, G., Asymptotic behavior for singularities of the mean curvature flow, J. Differ. Geom., 31, 285-299 (1990) · Zbl 0694.53005 · doi:10.4310/jdg/1214444099
[21] Hutchinson, JE, Second fundamental form for varifolds and the existence of surfaces minimising curvature, Indiana Univ. Math. J., 35, 45-71 (1986) · Zbl 0561.53008 · doi:10.1512/iumj.1986.35.35003
[22] Hutchinson, JE; Tonegawa, Y., Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory, Calc. Var. Partial Differ. Equ., 10, 49-84 (2000) · Zbl 1070.49026 · doi:10.1007/PL00013453
[23] Ilmanen, T., Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature, J. Differ. Geom., 38, 417-461 (1993) · Zbl 0784.53035 · doi:10.4310/jdg/1214454300
[24] Kim, I.; Kwon, D., Volume preserving mean curvature flow for star-shaped sets, Calc. Var. Partial Differ. Equ. (2020) · Zbl 1445.35205 · doi:10.1007/s00526-020-01738-0
[25] Laux, T.: Weak-strong uniqueness for volume-preserving mean curvature flow, arXiv preprint arXiv:2205.13040, 2022 · Zbl 1404.65121
[26] Laux, T.; Otto, F., Convergence of the thresholding scheme for multi-phase mean-curvature flow, Calc. Var. Partial Differ. Equ. (2016) · Zbl 1388.35121 · doi:10.1007/s00526-016-1053-0
[27] Laux, T.; Simon, TM, Convergence of the Allen-Cahn equation to multiphase mean curvature flow, Comm. Pure Appl. Math., 71, 1597-1647 (2018) · Zbl 1393.35122 · doi:10.1002/cpa.21747
[28] Laux, T.; Swartz, D., Convergence of thresholding schemes incorporating bulk effects, Interfaces Free Bound., 19, 273-304 (2017) · Zbl 1376.82004 · doi:10.4171/IFB/383
[29] Li, H., The volume-preserving mean curvature flow in Euclidean space, Pac. J. Math., 243, 331-355 (2009) · Zbl 1182.53061 · doi:10.2140/pjm.2009.243.331
[30] Liu, C.; Sato, N.; Tonegawa, Y., On the existence of mean curvature flow with transport term, Interfaces Free Bound, 12, 251-277 (2010) · Zbl 1201.53076 · doi:10.4171/IFB/234
[31] Luckhaus, S.; Sturzenhecker, T., Implicit time discretization for the mean curvature flow equation, Calc. Var. Partial Differ. Equ., 3, 253-271 (1995) · Zbl 0821.35003 · doi:10.1007/BF01205007
[32] Mizuno, M.; Tonegawa, Y., Convergence of the Allen-Cahn equation with Neumann boundary conditions, SIAM J. Math. Anal., 47, 1906-1932 (2015) · Zbl 1330.35196 · doi:10.1137/140987808
[33] Modica, L.; Mortola, S., Il limite nella \(\Gamma \)-convergenza di una famiglia di funzionali ellittici, Boll. Un. Mat. Ital. A, 14, 526-529 (1977) · Zbl 0364.49006
[34] Mugnai, L.; Röger, M., The Allen-Cahn action functional in higher dimensions, Interfaces Free Bound, 10, 45-78 (2008) · Zbl 1288.93096 · doi:10.4171/IFB/179
[35] Mugnai, L.; Seis, C.; Spadaro, E., Global solutions to the volume-preserving mean-curvature flow, Calc. Var. Partial Differ. Equ. (2016) · Zbl 1336.53082 · doi:10.1007/s00526-015-0943-x
[36] Pisante, A.; Punzo, F., Allen-Cahn approximation of mean curvature flow in Riemannian manifolds, II: Brakke’s flows, Commun. Contemp. Math., 17, 1450041 (2015) · Zbl 1336.53083 · doi:10.1142/S0219199714500412
[37] Pisante, A.; Punzo, F., Allen-Cahn approximation of mean curvature flow in Riemannian manifolds I, uniform estimates, Ann. Sc. Norm. Super. Pisa Cl. Sci., 15, 309-341 (2016) · Zbl 1341.53103
[38] Röger, M.; Schätzle, R., On a modified conjecture of De Giorgi, Math. Z., 254, 675-714 (2006) · Zbl 1126.49010 · doi:10.1007/s00209-006-0002-6
[39] Rubinstein, J.; Sternberg, P., Nonlocal reaction-diffusion equations and nucleation, IMA J. Appl. Math., 48, 249-264 (1992) · Zbl 0763.35051 · doi:10.1093/imamat/48.3.249
[40] Simon, L.: Lectures on geometric measure theory, Proc. Centre Math. Anal. Austral. Nat. Univ. 3, 1983 · Zbl 0546.49019
[41] Stuvard, S., Tonegawa, Y.: On the existence of canonical multi-phase Brakke flows, arXiv preprint arXiv:2109.14415, 2021 · Zbl 1459.53083
[42] Takasao, K., Convergence of the Allen-Cahn equation with constraint to Brakke’s mean curvature flow, Adv. Differ. Equ., 22, 765-792 (2017) · Zbl 1479.35531
[43] Takasao, K., Existence of weak solution for volume preserving mean curvature flow via phase field method, Indiana Univ. Math. J., 66, 2015-2035 (2017) · Zbl 1383.53051 · doi:10.1512/iumj.2017.66.6183
[44] Takasao, K., On obstacle problem for Brakke’s mean curvature flow, SIAM J. Math. Anal., 53, 6355-6369 (2021) · Zbl 1479.35547 · doi:10.1137/21M1400432
[45] Takasao, K.; Tonegawa, Y., Existence and regularity of mean curvature flow with transport term in higher dimensions, Math. Ann., 364, 857-935 (2016) · Zbl 1351.53083 · doi:10.1007/s00208-015-1237-5
[46] Talenti, G., The standard isoperimetric theorem, Handbook of convex geometry, 73-123 (1993), Amsterdam: North-Holland, Amsterdam · Zbl 0799.51015 · doi:10.1016/B978-0-444-89596-7.50008-0
[47] Tonegawa, Y., Integrality of varifolds in the singular limit of reaction-diffusion equations, Hiroshima Math. J., 33, 323-341 (2003) · Zbl 1059.35061 · doi:10.32917/hmj/1150997978
[48] Tonegawa, Y., Brakke’s Mean Curvature Flow (2019), Singapore: Springer, Singapore · Zbl 1448.49002 · doi:10.1007/978-981-13-7075-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.