×

Carrier-domain method for high-resolution computation of time-periodic long-wake flows. (English) Zbl 07686546

Summary: We are introducing the Carrier-Domain Method (CDM) for high-resolution computation of time-periodic long-wake flows, with cost-effectives that makes the computations practical. The CDM is closely related to the Multidomain Method, which was introduced 24 years ago, originally intended also for cost-effective computation of long-wake flows and later extended in scope to cover additional classes of flow problems. In the CDM, the computational domain moves in the free-stream direction, with a velocity that preserves the outflow nature of the downstream computational boundary. As the computational domain is moving, the velocity at the inflow plane is extracted from the velocity computed earlier when the plane’s current position was covered by the moving domain. The inflow data needed at an instant is extracted from one or more instants going back in time as many periods. Computing the long-wake flow with a high-resolution moving mesh that has a reasonable length would certainly be far more cost-effective than computing it with a fixed mesh that covers the entire length of the wake. We are also introducing a CDM version where the computational domain moves in a discrete fashion rather than a continuous fashion. To demonstrate how the CDM works, we compute, with the version where the computational domain moves in a continuous fashion, the 2D flow past a circular cylinder at Reynolds number 100. At this Reynolds number, the flow has an easily discernible vortex shedding frequency and widely published lift and drag coefficients and Strouhal number. The wake flow is computed up to 350 diameters downstream of the cylinder, far enough to see the secondary vortex street. The computations are performed with the Space-Time Variational Multiscale method and isogeometric discretization; the basis functions are quadratic NURBS in space and linear in time. The results show the power of the CDM in high-resolution computation of time-periodic long-wake flows.

MSC:

76M99 Basic methods in fluid mechanics
76D25 Wakes and jets
76D17 Viscous vortex flows

Software:

PINN

References:

[1] Osawa, Y.; Kalro, V.; Tezduyar, T., Multi-domain parallel computation of wake flows, Comput Methods Appl Mech Eng, 174, 371-391 (1999) · Zbl 0963.76049 · doi:10.1016/S0045-7825(98)00305-3
[2] Tezduyar, T.; Osawa, Y., Methods for parallel computation of complex flow problems, Parallel Comput, 25, 2039-2066 (1999) · doi:10.1016/S0167-8191(99)00080-0
[3] Tezduyar, T.; Osawa, Y., The multi-domain method for computation of the aerodynamics of a parachute crossing the far wake of an aircraft, Comput Methods Appl Mech Eng, 191, 705-716 (2001) · Zbl 1113.76406 · doi:10.1016/S0045-7825(01)00310-3
[4] Tezduyar, T.; Osawa, Y., Fluid-structure interactions of a parachute crossing the far wake of an aircraft, Comput Methods Appl Mech Eng, 191, 717-726 (2001) · Zbl 1113.76407 · doi:10.1016/S0045-7825(01)00311-5
[5] Takizawa, K.; Tezduyar, TE; Kuraishi, T., Multiscale ST methods for thermo-fluid analysis of a ground vehicle and its tires, Math Models Methods Appl Sci, 25, 2227-2255 (2015) · Zbl 1325.76139 · doi:10.1142/S0218202515400072
[6] Takizawa, K.; Tezduyar, TE, Space-time computation techniques with continuous representation in time (ST-C), Comput Mech, 53, 91-99 (2014) · doi:10.1007/s00466-013-0895-y
[7] Kuraishi, T.; Xu, Z.; Takizawa, K.; Tezduyar, TE; Yamasaki, S., High-resolution multi-domain space-time isogeometric analysis of car and tire aerodynamics with road contact and tire deformation and rotation, Comput Mech (2022) · Zbl 1509.74051 · doi:10.1007/s00466-022-02228-0
[8] Kuraishi, T.; Yamasaki, S.; Takizawa, K.; Tezduyar, TE; Xu, Z.; Kaneko, R., Space-time isogeometric analysis of car and tire aerodynamics with road contact and tire deformation and rotation, Comput Mech, 70, 49-72 (2022) · Zbl 1493.74116 · doi:10.1007/s00466-022-02155-0
[9] Ravensbergen, M.; Helgedagsrud, TA; Bazilevs, Y.; Korobenko, A., A variational multiscale framework for atmospheric turbulent flows over complex environmental terrains, Comput Methods Appl Mech Eng, 368, 113182 (2020) · Zbl 1506.86010 · doi:10.1016/j.cma.2020.113182
[10] Bazilevs Y, Takizawa K, Tezduyar TE, Korobenko A, Kuraishi T, Otoguro Y (2022) Computational aerodynamics with isogeometric analysis. J Adv Eng Comput, submitted
[11] Korobenko, A.; Yan, J.; Gohari, SMI; Sarkar, S.; Bazilevs, Y., FSI simulation of two back-to-back wind turbines in atmospheric boundary layer flow, Comput Fluids, 158, 167-175 (2017) · Zbl 1390.86036 · doi:10.1016/j.compfluid.2017.05.010
[12] Kuraishi, T.; Zhang, F.; Takizawa, K.; Tezduyar, TE, Wind turbine wake computation with the ST-VMS method, isogeometric discretization and multidomain method: I. Computational framework, Comput Mech, 68, 113-130 (2021) · Zbl 1480.76075 · doi:10.1007/s00466-021-02022-4
[13] Kuraishi, T.; Zhang, F.; Takizawa, K.; Tezduyar, TE, Wind turbine wake computation with the ST-VMS method, isogeometric discretization and multidomain method: II. Spatial and temporal resolution, Comput Mech, 68, 175-184 (2021) · Zbl 1496.76086 · doi:10.1007/s00466-021-02025-1
[14] Zhang, F.; Kuraishi, T.; Takizawa, K.; Tezduyar, TE, Wind turbine wake computation with the ST-VMS method and isogeometric discretization: directional preference in spatial refinement, Comput Mech, 69, 1031-1040 (2022) · Zbl 1502.76081 · doi:10.1007/s00466-021-02129-8
[15] Takizawa, K.; Tezduyar, TE, Multiscale space-time fluid-structure interaction techniques, Comput Mech, 48, 247-267 (2011) · Zbl 1398.76128 · doi:10.1007/s00466-011-0571-z
[16] Takizawa, K.; Tezduyar, TE, Space-time fluid-structure interaction methods, Math Models Methods Appl Sci, 22, supp02, 1230001 (2012) · Zbl 1248.76118 · doi:10.1142/S0218202512300013
[17] Takizawa, K.; Henicke, B.; Puntel, A.; Spielman, T.; Tezduyar, TE, Space-time computational techniques for the aerodynamics of flapping wings, J Appl Mech, 79, 010903 (2012) · doi:10.1115/1.4005073
[18] Takizawa, K.; Tezduyar, TE; Otoguro, Y.; Terahara, T.; Kuraishi, T.; Hattori, H., Turbocharger flow computations with the space-time isogeometric analysis (ST-IGA), Comput Fluids, 142, 15-20 (2017) · Zbl 1390.76689 · doi:10.1016/j.compfluid.2016.02.021
[19] Takizawa, K.; Tezduyar, TE; Otoguro, Y., Stabilization and discontinuity-capturing parameters for space-time flow computations with finite element and isogeometric discretizations, Comput Mech, 62, 1169-1186 (2018) · Zbl 1462.76128 · doi:10.1007/s00466-018-1557-x
[20] Otoguro, Y.; Takizawa, K.; Tezduyar, TE, Element length calculation in B-spline meshes for complex geometries, Comput Mech, 65, 1085-1103 (2020) · Zbl 1462.76148 · doi:10.1007/s00466-019-01809-w
[21] Kuraishi T, Takizawa K, Tezduyar TE (2022) Boundary layer mesh resolution in flow computation with the space-time variational multiscale method and isogeometric discretization. Math Models Methods Appl Sci, to appear · Zbl 1506.74112
[22] Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C, Terahara T (2022) Computational cardiovascular medicine with isogeometric analysis. J Adv Eng Comput, to appear. doi:10.55579/jaec.202263.381
[23] Tezduyar, TE, Stabilized finite element formulations for incompressible flow computations, Adv Appl Mech, 28, 1-44 (1992) · Zbl 0747.76069 · doi:10.1016/S0065-2156(08)70153-4
[24] Tezduyar, TE, Computation of moving boundaries and interfaces and stabilization parameters, Int J Numer Methods Fluids, 43, 555-575 (2003) · Zbl 1032.76605 · doi:10.1002/fld.505
[25] Tezduyar, TE; Sathe, S., Modeling of fluid-structure interactions with the space-time finite elements: solution techniques, Int J Numer Methods Fluids, 54, 855-900 (2007) · Zbl 1144.74044 · doi:10.1002/fld.1430
[26] Brooks, AN; Hughes, TJR, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput Methods Appl Mech Eng, 32, 199-259 (1982) · Zbl 0497.76041 · doi:10.1016/0045-7825(82)90071-8
[27] Hughes, TJR, Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods, Comput Methods Appl Mech Eng, 127, 387-401 (1995) · Zbl 0866.76044 · doi:10.1016/0045-7825(95)00844-9
[28] Hughes, TJR; Oberai, AA; Mazzei, L., Large eddy simulation of turbulent channel flows by the variational multiscale method, Phys Fluids, 13, 1784-1799 (2001) · Zbl 1184.76237 · doi:10.1063/1.1367868
[29] Bazilevs, Y.; Calo, VM; Cottrell, JA; Hughes, TJR; Reali, A.; Scovazzi, G., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput Methods Appl Mech Eng, 197, 173-201 (2007) · Zbl 1169.76352 · doi:10.1016/j.cma.2007.07.016
[30] Bazilevs, Y.; Akkerman, I., Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method, J Comput Phys, 229, 3402-3414 (2010) · Zbl 1290.76037 · doi:10.1016/j.jcp.2010.01.008
[31] Liu Y, Takizawa K, Otoguro Y, Kuraishi T, Tezduyar TE (2022) Flow computation with the space-time isogeometric analysis and higher-order basis functions in time. Math Models Methods Appl Sci, to appear
[32] Kalro, V.; Tezduyar, TE, A parallel 3D computational method for fluid-structure interactions in parachute systems, Comput Methods Appl Mech Eng, 190, 321-332 (2000) · Zbl 0993.76044 · doi:10.1016/S0045-7825(00)00204-8
[33] Bazilevs, Y.; Calo, VM; Hughes, TJR; Zhang, Y., Isogeometric fluid-structure interaction: theory, algorithms, and computations, Comput Mech, 43, 3-37 (2008) · Zbl 1169.74015 · doi:10.1007/s00466-008-0315-x
[34] Takizawa, K.; Bazilevs, Y.; Tezduyar, TE, Space-time and ALE-VMS techniques for patient-specific cardiovascular fluid-structure interaction modeling, Arch Comput Methods Eng, 19, 171-225 (2012) · Zbl 1354.92023 · doi:10.1007/s11831-012-9071-3
[35] Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid-structure interaction: methods and applications. Wiley, Hoboken. ISBN 978-0470978771 · Zbl 1286.74001
[36] Bazilevs, Y.; Takizawa, K.; Tezduyar, TE, Computational analysis methods for complex unsteady flow problems, Math Models Methods Appl Sci, 29, 825-838 (2019) · Zbl 1425.76128 · doi:10.1142/S0218202519020020
[37] Bazilevs, Y.; Hsu, M-C; Akkerman, I.; Wright, S.; Takizawa, K.; Henicke, B.; Spielman, T.; Tezduyar, TE, 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics, Int J Numer Methods Fluids, 65, 207-235 (2011) · Zbl 1428.76086 · doi:10.1002/fld.2400
[38] Bazilevs, Y.; Hsu, M-C; Kiendl, J.; Wüchner, R.; Bletzinger, K-U, 3D simulation of wind turbine rotors at full scale. Part II: fluid-structure interaction modeling with composite blades, Int J Numer Methods Fluids, 65, 236-253 (2011) · Zbl 1428.76087 · doi:10.1002/fld.2454
[39] Hsu, M-C; Akkerman, I.; Bazilevs, Y., High-performance computing of wind turbine aerodynamics using isogeometric analysis, Comput Fluids, 49, 93-100 (2011) · Zbl 1271.76276 · doi:10.1016/j.compfluid.2011.05.002
[40] Bazilevs, Y.; Hsu, M-C; Scott, MA, Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines, Comput Methods Appl Mech Eng, 249-252, 28-41 (2012) · Zbl 1348.74094 · doi:10.1016/j.cma.2012.03.028
[41] Hsu, M-C; Akkerman, I.; Bazilevs, Y., Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment, Wind Energy, 17, 461-481 (2014) · doi:10.1002/we.1599
[42] Korobenko, A.; Hsu, M-C; Akkerman, I.; Tippmann, J.; Bazilevs, Y., Structural mechanics modeling and FSI simulation of wind turbines, Math Models Methods Appl Sci, 23, 249-272 (2013) · Zbl 1261.74011 · doi:10.1142/S0218202513400034
[43] Korobenko, A.; Hsu, M-C; Akkerman, I.; Bazilevs, Y., Aerodynamic simulation of vertical-axis wind turbines, J Appl Mech, 81, 021011 (2013) · doi:10.1115/1.4024415
[44] Bazilevs, Y.; Takizawa, K.; Tezduyar, TE; Hsu, M-C; Kostov, N.; McIntyre, S., Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods, Arch Comput Methods Eng, 21, 359-398 (2014) · Zbl 1348.74095 · doi:10.1007/s11831-014-9119-7
[45] Bazilevs, Y.; Korobenko, A.; Deng, X.; Yan, J.; Kinzel, M.; Dabiri, JO, FSI modeling of vertical-axis wind turbines, J Appl Mech, 81, 081006 (2014) · doi:10.1115/1.4027466
[46] Bazilevs, Y.; Korobenko, A.; Deng, X.; Yan, J., Novel structural modeling and mesh moving techniques for advanced FSI simulation of wind turbines, Int J Numer Methods Eng, 102, 766-783 (2015) · Zbl 1352.76033 · doi:10.1002/nme.4738
[47] Bazilevs, Y.; Korobenko, A.; Yan, J.; Pal, A.; Gohari, SMI; Sarkar, S., ALE-VMS formulation for stratified turbulent incompressible flows with applications, Math Models Methods Appl Sci, 25, 2349-2375 (2015) · Zbl 1329.76050 · doi:10.1142/S0218202515400114
[48] Bazilevs, Y.; Korobenko, A.; Deng, X.; Yan, J., FSI modeling for fatigue-damage prediction in full-scale wind-turbine blades, J Appl Mech, 83, 6, 061010 (2016) · doi:10.1115/1.4033080
[49] Yan, J.; Korobenko, A.; Deng, X.; Bazilevs, Y., Computational free-surface fluid-structure interaction with application to floating offshore wind turbines, Comput Fluids, 141, 155-174 (2016) · Zbl 1390.76376 · doi:10.1016/j.compfluid.2016.03.008
[50] Korobenko, A.; Bazilevs, Y.; Takizawa, K.; Tezduyar, TE; Tezduyar, TE, Recent advances in ALE-VMS and ST-VMS computational aerodynamic and FSI analysis of wind turbines, Frontiers in computational fluid-structure interaction and flow simulation: research from lead investigators under forty—2018, modeling and simulation in science, engineering and technology, 253-336 (2018), Berlin: Springer, Berlin · Zbl 1406.76003 · doi:10.1007/978-3-319-96469-0_7
[51] Korobenko, A.; Bazilevs, Y.; Takizawa, K.; Tezduyar, TE, Computer modeling of wind turbines: 1. ALE-VMS and ST-VMS aerodynamic and FSI analysis, Arch Comput Methods Eng, 26, 1059-1099 (2019) · doi:10.1007/s11831-018-9292-1
[52] Bazilevs, Y.; Takizawa, K.; Tezduyar, TE; Hsu, M-C; Otoguro, Y.; Mochizuki, H.; Wu, MCH, Wind turbine and turbomachinery computational analysis with the ALE and space-time variational multiscale methods and isogeometric discretization, J Adv Eng Comput, 4, 1-32 (2020) · doi:10.25073/jaec.202041.278
[53] Bazilevs, Y.; Takizawa, K.; Tezduyar, TE; Hsu, M-C; Otoguro, Y.; Mochizuki, H.; Wu, MCH; Grama, A.; Sameh, A., ALE and space-time variational multiscale isogeometric analysis of wind turbines and turbomachinery, Parallel algorithms in computational science and engineering, modeling and simulation in science, engineering and technology, 195-233 (2020), Berlin: Springer, Berlin · Zbl 1454.65111 · doi:10.1007/978-3-030-43736-7_7
[54] Takizawa, K.; Bazilevs, Y.; Tezduyar, TE; Korobenko, A.; Grama, A.; Sameh, A., Variational multiscale flow analysis in aerospace, energy and transportation technologies, Parallel algorithms in computational science and engineering, modeling and simulation in science, engineering and technology, 235-280 (2020), Berlin: Springer, Berlin · Zbl 1454.65120 · doi:10.1007/978-3-030-43736-7_8
[55] Takizawa, K.; Bazilevs, Y.; Tezduyar, TE; Korobenko, A., Computational flow analysis in aerospace, energy and transportation technologies with the variational multiscale methods, J Adv Eng Comput, 4, 83-117 (2020) · doi:10.25073/jaec.202042.279
[56] Bayram, AM; Bear, C.; Bear, M.; Korobenko, A., Performance analysis of two vertical-axis hydrokinetic turbines using variational multiscale method, Comput Fluids, 200, 104432 (2020) · Zbl 1519.76270 · doi:10.1016/j.compfluid.2020.104432
[57] Ravensbergen, M.; Bayram, AM; Korobenko, A., The actuator line method for wind turbine modelling applied in a variational multiscale framework, Comput Fluids, 201, 104465 (2020) · Zbl 1519.76158 · doi:10.1016/j.compfluid.2020.104465
[58] Xu, F.; Moutsanidis, G.; Kamensky, D.; Hsu, M-C; Murugan, M.; Ghoshal, A.; Bazilevs, Y., Compressible flows on moving domains: stabilized methods, weakly enforced essential boundary conditions, sliding interfaces, and application to gas-turbine modeling, Comput Fluids, 158, 201-220 (2017) · Zbl 1390.76805 · doi:10.1016/j.compfluid.2017.02.006
[59] Murugan, M.; Ghoshal, A.; Xu, F.; Hsu, M-C; Bazilevs, Y.; Bravo, L.; Kerner, K., Analytical study of articulating turbine rotor blade concept for improved off-design performance of gas turbine engines, J Eng Gas Turbines Power, 139, 102601-6 (2017) · doi:10.1115/1.4036359
[60] Castorrini, A.; Corsini, A.; Rispoli, F.; Takizawa, K.; Tezduyar, TE, A stabilized ALE method for computational fluid-structure interaction analysis of passive morphing in turbomachinery, Math Models Methods Appl Sci, 29, 967-994 (2019) · Zbl 1425.76134 · doi:10.1142/S0218202519410057
[61] Kozak, N.; Xu, F.; Rajanna, MR; Bravo, L.; Murugan, M.; Ghoshal, A.; Bazilevs, Y.; Hsu, M-C, High-fidelity finite element modeling and analysis of adaptive gas turbine stator-rotor flow interaction at off-design conditions, J Mech, 36, 595-606 (2020) · doi:10.1017/jmech.2020.28
[62] Kozak, N.; Rajanna, MR; Wu, MCH; Murugan, M.; Bravo, L.; Ghoshal, A.; Hsu, M-C; Bazilevs, Y., Optimizing gas turbine performance using the surrogate management framework and high-fidelity flow modeling, Energies, 13, 4283 (2020) · doi:10.3390/en13174283
[63] Bazilevs, Y.; Takizawa, K.; Wu, MCH; Kuraishi, T.; Avsar, R.; Xu, Z.; Tezduyar, TE, Gas turbine computational flow and structure analysis with isogeometric discretization and a complex-geometry mesh generation method, Comput Mech, 67, 57-84 (2021) · Zbl 07360493 · doi:10.1007/s00466-020-01919-w
[64] Zhu, Q.; Yan, J., A moving-domain CFD solver in FEniCS with applications to tidal turbine simulations in turbulent flows, Comput Math Appl, 81, 532-546 (2021) · Zbl 1460.76564 · doi:10.1016/j.camwa.2019.07.034
[65] Yan, J.; Korobenko, A.; Tejada-Martinez, AE; Golshan, R.; Bazilevs, Y., A new variational multiscale formulation for stratified incompressible turbulent flows, Comput Fluids, 158, 150-156 (2017) · Zbl 1390.76107 · doi:10.1016/j.compfluid.2016.12.004
[66] Helgedagsrud, TA; Bazilevs, Y.; Mathisen, KM; Oiseth, OA, Computational and experimental investigation of free vibration and flutter of bridge decks, Comput Mech, 63, 121-136 (2019) · Zbl 1464.74064 · doi:10.1007/s00466-018-1587-4
[67] Helgedagsrud, TA; Bazilevs, Y.; Korobenko, A.; Mathisen, KM; Oiseth, OA, Using ALE-VMS to compute aerodynamic derivatives of bridge sections, Comput Fluids, 179, 820-832 (2019) · Zbl 1411.74029 · doi:10.1016/j.compfluid.2018.04.037
[68] Helgedagsrud, TA; Akkerman, I.; Bazilevs, Y.; Mathisen, KM; Oiseth, OA, Isogeometric modeling and experimental investigation of moving-domain bridge aerodynamics, ASCE J Eng Mech, 145, 04019026 (2019) · doi:10.1061/(ASCE)EM.1943-7889.0001601
[69] Helgedagsrud, TA; Bazilevs, Y.; Mathisen, KM; Yan, J.; Oiseth, OA, Modeling and simulation of bridge-section buffeting response in turbulent flow, Math Models Methods Appl Sci, 29, 939-966 (2019) · Zbl 1425.76137 · doi:10.1142/S0218202519410045
[70] Helgedagsrud, TA; Bazilevs, Y.; Mathisen, KM; Oiseth, OA, ALE-VMS methods for wind-resistant design of long-span bridges, J Wind Eng Ind Aerodyn, 191, 143-153 (2019) · doi:10.1016/j.jweia.2019.06.001
[71] Augier, B.; Yan, J.; Korobenko, A.; Czarnowski, J.; Ketterman, G.; Bazilevs, Y., Experimental and numerical FSI study of compliant hydrofoils, Comput Mech, 55, 1079-1090 (2015) · Zbl 1390.76375 · doi:10.1007/s00466-014-1090-5
[72] Yan, J.; Augier, B.; Korobenko, A.; Czarnowski, J.; Ketterman, G.; Bazilevs, Y., FSI modeling of a propulsion system based on compliant hydrofoils in a tandem configuration, Comput Fluids, 141, 201-211 (2016) · Zbl 1390.76375 · doi:10.1016/j.compfluid.2015.07.013
[73] Zhu, Q.; Xu, F.; Xu, S.; Hsu, M-C; Yan, J., An immersogeometric formulation for free-surface flows with application to marine engineering problems, Comput Methods Appl Mech Eng, 361, 112748 (2020) · Zbl 1442.76019 · doi:10.1016/j.cma.2019.112748
[74] Akkerman, I.; Bazilevs, Y.; Benson, DJ; Farthing, MW; Kees, CE, Free-surface flow and fluid-object interaction modeling with emphasis on ship hydrodynamics, J Appl Mech, 79, 010905 (2012) · doi:10.1115/1.4005072
[75] Akkerman, I.; Dunaway, J.; Kvandal, J.; Spinks, J.; Bazilevs, Y., Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS, Comput Mech, 50, 719-727 (2012) · doi:10.1007/s00466-012-0770-2
[76] Yan, J.; Deng, X.; Korobenko, A.; Bazilevs, Y., Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines, Comput Fluids, 158, 157-166 (2017) · Zbl 1390.86027 · doi:10.1016/j.compfluid.2016.06.016
[77] Yan, J.; Deng, X.; Xu, F.; Xu, S.; Zhu, Q., Numerical simulations of two back-to-back horizontal axis tidal stream turbines in free-surface flows, J Appl Mech, 10, 1115-1, 4046317 (2020)
[78] Zhu, Q.; Yan, J.; Tejada-Martínez, A.; Bazilevs, Y., Variational multiscale modeling of Langmuir turbulent boundary layers in shallow water using isogeometric analysis, Mech Res Commun, 108, 103570 (2020) · doi:10.1016/j.mechrescom.2020.103570
[79] Yan, J.; Yan, W.; Lin, S.; Wagner, G., A fully coupled finite element formulation for liquid-solid-gas thermo-fluid flow with melting and solidification, Comput Methods Appl Mech Eng, 336, 444-470 (2018) · Zbl 1440.74266 · doi:10.1016/j.cma.2018.03.017
[80] Yan, J.; Lin, SS; Bazilevs, Y.; Wagner, G., Isogeometric analysis of multi-phase flows with surface tension and with application to dynamics of rising bubbles, Comput Fluids, 179, 777-789 (2019) · Zbl 1411.76074 · doi:10.1016/j.compfluid.2018.04.017
[81] Xu, S.; Liu, N.; Yan, J., Residual-based variational multi-scale modeling for particle-laden gravity currents over flat and triangular wavy terrains, Comput Fluids, 188, 114-124 (2019) · Zbl 1519.76160 · doi:10.1016/j.compfluid.2019.05.008
[82] Bayram, AM; Korobenko, A., Variational multiscale framework for cavitating flows, Comput Mech, 66, 49-67 (2020) · Zbl 1465.76051 · doi:10.1007/s00466-020-01840-2
[83] Zhao, Z.; Yan, J., Variational multi-scale modeling of interfacial flows with a balanced-force surface tension model, Mech Res Commun (2020) · doi:10.1016/j.mechrescom.2020.103608
[84] Cen, H.; Zhou, Q.; Korobenko, A., Variational multiscale framework for cavitating flows, Comput Fluids, 214, 104765 (2021) · Zbl 1521.76322 · doi:10.1016/j.compfluid.2020.104765
[85] Zhao, Z.; Zhu, Q.; Yan, J., A thermal multi-phase flow model for directed energy deposition processes via a moving signed distance function, Comput Methods Appl Mech Eng, 373, 113518 (2021) · Zbl 1506.74245 · doi:10.1016/j.cma.2020.113518
[86] Zhu, Q.; Liu, Z.; Yan, J., Machine learning for metal additive manufacturing: predicting temperature and melt pool fluid dynamics using physics-informed neural networks, Comput Mech, 67, 619-635 (2021) · Zbl 07360521 · doi:10.1007/s00466-020-01952-9
[87] Wang, C.; Wu, MCH; Xu, F.; Hsu, M-C; Bazilevs, Y., Modeling of a hydraulic arresting gear using fluid-structure interaction and isogeometric analysis, Comput Fluids, 142, 3-14 (2017) · Zbl 1390.76013 · doi:10.1016/j.compfluid.2015.12.004
[88] Wu, MCH; Kamensky, D.; Wang, C.; Herrema, AJ; Xu, F.; Pigazzini, MS; Verma, A.; Marsden, AL; Bazilevs, Y.; Hsu, M-C, Optimizing fluid-structure interaction systems with immersogeometric analysis and surrogate modeling: application to a hydraulic arresting gear, Comput Methods Appl Mech Eng, 316, 668-693 (2017) · Zbl 1439.74117 · doi:10.1016/j.cma.2016.09.032
[89] Codoni, D.; Moutsanidis, G.; Hsu, M-C; Bazilevs, Y.; Johansen, C.; Korobenko, A., Stabilized methods for high-speed compressible flows: toward hypersonic simulations, Comput Mech, 67, 785-809 (2021) · Zbl 1490.76134 · doi:10.1007/s00466-020-01963-6
[90] Bazilevs, Y.; Calo, VM; Zhang, Y.; Hughes, TJR, Isogeometric fluid-structure interaction analysis with applications to arterial blood flow, Comput Mech, 38, 310-322 (2006) · Zbl 1161.74020 · doi:10.1007/s00466-006-0084-3
[91] Bazilevs, Y.; Gohean, JR; Hughes, TJR; Moser, RD; Zhang, Y., Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device, Comput Methods Appl Mech Eng, 198, 3534-3550 (2009) · Zbl 1229.74096 · doi:10.1016/j.cma.2009.04.015
[92] Bazilevs, Y.; Hsu, M-C; Benson, D.; Sankaran, S.; Marsden, A., Computational fluid-structure interaction: methods and application to a total cavopulmonary connection, Computat Mech, 45, 77-89 (2009) · Zbl 1398.92056 · doi:10.1007/s00466-009-0419-y
[93] Bazilevs, Y.; Hsu, M-C; Zhang, Y.; Wang, W.; Liang, X.; Kvamsdal, T.; Brekken, R.; Isaksen, J., A fully-coupled fluid-structure interaction simulation of cerebral aneurysms, Comput Mech, 46, 3-16 (2010) · Zbl 1301.92014 · doi:10.1007/s00466-009-0421-4
[94] Bazilevs, Y.; Hsu, M-C; Zhang, Y.; Wang, W.; Kvamsdal, T.; Hentschel, S.; Isaksen, J., Computational fluid-structure interaction: methods and application to cerebral aneurysms, Biomech Model Mechanobiol, 9, 481-498 (2010) · doi:10.1007/s10237-010-0189-7
[95] Hsu, M-C; Bazilevs, Y., Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulations, Finite Elem Anal Des, 47, 593-599 (2011) · doi:10.1016/j.finel.2010.12.015
[96] Long, CC; Marsden, AL; Bazilevs, Y., Fluid-structure interaction simulation of pulsatile ventricular assist devices, Comput Mech, 52, 971-981 (2013) · Zbl 1388.74039 · doi:10.1007/s00466-013-0858-3
[97] Long, CC; Esmaily-Moghadam, M.; Marsden, AL; Bazilevs, Y., Computation of residence time in the simulation of pulsatile ventricular assist devices, Comput Mech, 54, 911-919 (2014) · Zbl 1311.74041 · doi:10.1007/s00466-013-0931-y
[98] Long, CC; Marsden, AL; Bazilevs, Y., Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk, Comput Mech, 54, 921-932 (2014) · Zbl 1314.74056 · doi:10.1007/s00466-013-0967-z
[99] Hsu, M-C; Kamensky, D.; Bazilevs, Y.; Sacks, MS; Hughes, TJR, Fluid-structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation, Comput Mech, 54, 1055-1071 (2014) · Zbl 1311.74039 · doi:10.1007/s00466-014-1059-4
[100] Hsu, M-C; Kamensky, D.; Xu, F.; Kiendl, J.; Wang, C.; Wu, MCH; Mineroff, J.; Reali, A.; Bazilevs, Y.; Sacks, MS, Dynamic and fluid-structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models, Comput Mech, 55, 1211-1225 (2015) · Zbl 1325.74048 · doi:10.1007/s00466-015-1166-x
[101] Kamensky, D.; Hsu, M-C; Schillinger, D.; Evans, JA; Aggarwal, A.; Bazilevs, Y.; Sacks, MS; Hughes, TJR, An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves, Comput Methods Appl Mech Eng, 284, 1005-1053 (2015) · Zbl 1423.74273 · doi:10.1016/j.cma.2014.10.040
[102] Takizawa, K.; Bazilevs, Y.; Tezduyar, TE; Hsu, M-C, Computational cardiovascular flow analysis with the variational multiscale methods, J Adv Eng Comput, 3, 366-405 (2019) · doi:10.25073/jaec.201932.245
[103] Hughes, TJR; Takizawa, K.; Bazilevs, Y.; Tezduyar, TE; Hsu, M-C; Grama, A.; Sameh, A., Computational cardiovascular analysis with the variational multiscale methods and isogeometric discretization, Parallel algorithms in computational science and engineering, modeling and simulation in science, engineering and technology, 151-193 (2020), Berlin: Springer, Berlin · Zbl 1454.65119 · doi:10.1007/978-3-030-43736-7_6
[104] Hsu, M-C; Wang, C.; Xu, F.; Herrema, AJ; Krishnamurthy, A., Direct immersogeometric fluid flow analysis using B-rep CAD models, Comput Aided Geom Des, 43, 143-158 (2016) · Zbl 1418.76042 · doi:10.1016/j.cagd.2016.02.007
[105] Kamensky, D.; Evans, JA; Hsu, M-C, Stability and conservation properties of collocated constraints in immersogeometric fluid-thin structure interaction analysis, Commun Comput Phys, 18, 1147-1180 (2015) · Zbl 1373.76093 · doi:10.4208/cicp.150115.170415s
[106] Kamensky, D.; Evans, JA; Hsu, M-C; Bazilevs, Y., Projection-based stabilization of interface Lagrange multipliers in immersogeometric fluid-thin structure interaction analysis, with application to heart valve modeling, Comput Math Appl, 74, 2068-2088 (2017) · Zbl 1397.65274 · doi:10.1016/j.camwa.2017.07.006
[107] Kamensky, D.; Hsu, M-C; Yu, Y.; Evans, JA; Sacks, MS; Hughes, TJR, Immersogeometric cardiovascular fluid-structure interaction analysis with divergence-conforming B-splines, Comput Methods Appl Mech Eng, 314, 408-472 (2017) · Zbl 1439.76077 · doi:10.1016/j.cma.2016.07.028
[108] Xu, F.; Morganti, S.; Zakerzadeh, R.; Kamensky, D.; Auricchio, F.; Reali, A.; Hughes, TJR; Sacks, MS; Hsu, M-C, A framework for designing patient-specific bioprosthetic heart valves using immersogeometric fluid-structure interaction analysis, Int J Numer Methods Biomed Eng, 34, e2938 (2018) · doi:10.1002/cnm.2938
[109] Yu, Y.; Kamensky, D.; Hsu, M-C; Lu, XY; Bazilevs, Y.; Hughes, TJR, Error estimates for projection-based dynamic augmented Lagrangian boundary condition enforcement, with application to fluid-structure interaction, Math Models Methods Appl Sci, 28, 2457-2509 (2018) · Zbl 1411.74059 · doi:10.1142/S0218202518500537
[110] Wu, MCH; Zakerzadeh, R.; Kamensky, D.; Kiendl, J.; Sacks, MS; Hsu, M-C, An anisotropic constitutive model for immersogeometric fluid-structure interaction analysis of bioprosthetic heart valves, J Biomech, 74, 23-31 (2018) · doi:10.1016/j.jbiomech.2018.04.012
[111] Wu, MCH; Muchowski, HM; Johnson, EL; Rajanna, MR; Hsu, M-C, Immersogeometric fluid-structure interaction modeling and simulation of transcatheter aortic valve replacement, Comput Methods Appl Mech Eng, 357, 112556 (2019) · Zbl 1442.74067 · doi:10.1016/j.cma.2019.07.025
[112] Johnson, EL; Wu, MCH; Xu, F.; Wiese, NM; Rajanna, MR; Herrema, AJ; Ganapathysubramanian, B.; Hughes, TJR; Sacks, MS; Hsu, M-C, Thinner biological tissues induce leaflet flutter in aortic heart valve replacements, Proc Natl Acad Sci, 117, 19007-19016 (2020) · doi:10.1073/pnas.2002821117
[113] Xu, F.; Johnson, EL; Wang, C.; Jafari, A.; Yang, C-H; Sacks, MS; Krishnamurthy, A.; Hsu, M-C, Computational investigation of left ventricular hemodynamics following bioprosthetic aortic and mitral valve replacement, Mech Res Commun (2021) · doi:10.1016/j.mechrescom.2020.103604
[114] Tezduyar, TE; Takizawa, K.; Moorman, C.; Wright, S.; Christopher, J., Space-time finite element computation of complex fluid-structure interactions, Int J Numer Methods Fluids, 64, 1201-1218 (2010) · Zbl 1427.76148 · doi:10.1002/fld.2221
[115] Xu, F.; Schillinger, D.; Kamensky, D.; Varduhn, V.; Wang, C.; Hsu, M-C, The tetrahedral finite cell method for fluids: immersogeometric analysis of turbulent flow around complex geometries, Comput Fluids, 141, 135-154 (2016) · Zbl 1390.76372 · doi:10.1016/j.compfluid.2015.08.027
[116] Wang, C.; Xu, F.; Hsu, M-C; Krishnamurthy, A., Rapid B-rep model preprocessing for immersogeometric analysis using analytic surfaces, Comput Aided Geom Des, 52-53, 190-204 (2017) · Zbl 1505.65101 · doi:10.1016/j.cagd.2017.03.002
[117] Xu, S.; Xu, F.; Kommajosula, A.; Hsu, M-C; Ganapathysubramanian, B., Immersogeometric analysis of moving objects in incompressible flows, Comput Fluids, 189, 24-33 (2019) · Zbl 1519.76161 · doi:10.1016/j.compfluid.2019.05.018
[118] Xu, S.; Gao, B.; Lofquist, A.; Fernando, M.; Hsu, M-C; Sundar, H.; Ganapathysubramanian, B., An octree-based immersogeometric approach for modeling inertial migration of particles in channels, Comput Fluids, 214, 104764 (2020) · Zbl 1521.76876 · doi:10.1016/j.compfluid.2020.104764
[119] Tezduyar, TE; Takizawa, K., Space-time computations in practical engineering applications: a summary of the 25-year history, Comput Mech, 63, 747-753 (2019) · Zbl 1471.76048 · doi:10.1007/s00466-018-1620-7
[120] Takizawa, K.; Tezduyar, TE; McIntyre, S.; Kostov, N.; Kolesar, R.; Habluetzel, C., Space-time VMS computation of wind-turbine rotor and tower aerodynamics, Comput Mech, 53, 1-15 (2014) · Zbl 1398.76129 · doi:10.1007/s00466-013-0888-x
[121] Takizawa, K.; Tezduyar, TE; Mochizuki, H.; Hattori, H.; Mei, S.; Pan, L.; Montel, K., Space-time VMS method for flow computations with slip interfaces (ST-SI), Math Models Methods Appl Sci, 25, 2377-2406 (2015) · Zbl 1329.76345 · doi:10.1142/S0218202515400126
[122] Otoguro, Y.; Mochizuki, H.; Takizawa, K.; Tezduyar, TE, Space-time variational multiscale isogeometric analysis of a tsunami-shelter vertical-axis wind turbine, Comput Mech, 66, 1443-1460 (2020) · Zbl 1468.74079 · doi:10.1007/s00466-020-01910-5
[123] Otoguro, Y.; Takizawa, K.; Tezduyar, TE; Tezduyar, TE, A general-purpose NURBS mesh generation method for complex geometries, Frontiers in computational fluid-structure interaction and flow simulation: research from lead investigators under forty—2018, modeling and simulation in science, engineering and technology, 399-434 (2018), Berlin: Springer, Berlin · Zbl 1406.76003 · doi:10.1007/978-3-319-96469-0_10
[124] Komiya, K.; Kanai, T.; Otoguro, Y.; Kaneko, M.; Hirota, K.; Zhang, Y.; Takizawa, K.; Tezduyar, TE; Nohmi, M.; Tsuneda, T.; Kawai, M.; Isono, M., Computational analysis of flow-driven string dynamics in a pump and residence time calculation, IOP Conf Ser Earth Environ Sci, 240, 062014 (2019) · doi:10.1088/1755-1315/240/6/062014
[125] Kanai, T.; Takizawa, K.; Tezduyar, TE; Komiya, K.; Kaneko, M.; Hirota, K.; Nohmi, M.; Tsuneda, T.; Kawai, M.; Isono, M., Methods for computation of flow-driven string dynamics in a pump and residence time, Math Models Methods Appl Sci, 29, 839-870 (2019) · Zbl 1425.76139 · doi:10.1142/S021820251941001X
[126] Otoguro, Y.; Takizawa, K.; Tezduyar, TE; Nagaoka, K.; Avsar, R.; Zhang, Y., Space-time VMS flow analysis of a turbocharger turbine with isogeometric discretization: computations with time-dependent and steady-inflow representations of the intake/exhaust cycle, Comput Mech, 64, 1403-1419 (2019) · Zbl 1467.76044 · doi:10.1007/s00466-019-01722-2
[127] Takizawa, K.; Tezduyar, TE; Bazilevs, Y.; Takizawa, K., New directions in space-time computational methods, Advances in computational fluid-structure interaction and flow simulation: new methods and challenging computations, modeling and simulation in science, engineering and technology, 159-178 (2016), Berlin: Springer, Berlin · Zbl 1356.76291 · doi:10.1007/978-3-319-40827-9_13
[128] Kuraishi, T.; Takizawa, K.; Tezduyar, TE; Tezduyar, TE, Space-time computational analysis of tire aerodynamics with actual geometry, road contact and tire deformation, Frontiers in computational fluid-structure interaction and flow simulation: research from lead investigators under forty - 2018, modeling and simulation in science, engineering and technology, 337-376 (2018), Berlin: Springer, Berlin · Zbl 1406.76003 · doi:10.1007/978-3-319-96469-0_8
[129] Kuraishi, T.; Takizawa, K.; Tezduyar, TE, Tire aerodynamics with actual tire geometry, road contact and tire deformation, Comput Mech, 63, 1165-1185 (2019) · Zbl 1469.74041 · doi:10.1007/s00466-018-1642-1
[130] Kuraishi, T.; Takizawa, K.; Tezduyar, TE, Space-time computational analysis of tire aerodynamics with actual geometry, road contact, tire deformation, road roughness and fluid film, Comput Mech, 64, 1699-1718 (2019) · Zbl 1465.74130 · doi:10.1007/s00466-019-01746-8
[131] Tezduyar, TE; Takizawa, K.; Kuraishi, T.; Aldakheel, F.; Hudobivnik, B.; Soleimani, M.; Wessels, H.; Weissenfels, C.; Marino, M., Space-time computational FSI and flow analysis: 2004 and beyond, Current trends and open problems in computational mechanics, 537-544 (2022), Berlin: Springer, Berlin · Zbl 1506.74112 · doi:10.1007/978-3-030-87312-7_52
[132] Kuraishi, T.; Terahara, T.; Takizawa, K.; Tezduyar, TE, Computational flow analysis with boundary layer and contact representation: I. Tire aerodynamics with road contact, J Mech, 38, 77-87 (2022) · doi:10.1093/jom/ufac009
[133] Kuraishi, T.; Takizawa, K.; Tezduyar, TE, Space-time isogeometric flow analysis with built-in Reynolds-equation limit, Math Models Methods Appl Sci, 29, 871-904 (2019) · Zbl 1425.76142 · doi:10.1142/S0218202519410021
[134] Takizawa, K.; Tezduyar, TE; Kuraishi, T.; Tabata, S.; Takagi, H., Computational thermo-fluid analysis of a disk brake, Comput Mech, 57, 965-977 (2016) · Zbl 1382.74044 · doi:10.1007/s00466-016-1272-4
[135] Takizawa, K.; Henicke, B.; Puntel, A.; Kostov, N.; Tezduyar, TE, Space-time techniques for computational aerodynamics modeling of flapping wings of an actual locust, Comput Mech, 50, 743-760 (2012) · Zbl 1286.76179 · doi:10.1007/s00466-012-0759-x
[136] Takizawa, K.; Kostov, N.; Puntel, A.; Henicke, B.; Tezduyar, TE, Space-time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle, Comput Mech, 50, 761-778 (2012) · Zbl 1286.76180 · doi:10.1007/s00466-012-0758-y
[137] Takizawa, K.; Tezduyar, TE; Buscher, A.; Asada, S., Space-time interface-tracking with topology change (ST-TC), Comput Mech, 54, 955-971 (2014) · Zbl 1311.74045 · doi:10.1007/s00466-013-0935-7
[138] Takizawa, K.; Tezduyar, TE; Buscher, A., Space-time computational analysis of MAV flapping-wing aerodynamics with wing clapping, Comput Mech, 55, 1131-1141 (2015) · doi:10.1007/s00466-014-1095-0
[139] Takizawa, K.; Bazilevs, Y.; Tezduyar, TE, Mesh moving methods in flow computations with the space-time and arbitrary Lagrangian-Eulerian methods, J Adv Eng Comput, 6, 85-112 (2022) · doi:10.55579/jaec.202262.377
[140] Takizawa, K.; Montes, D.; Fritze, M.; McIntyre, S.; Boben, J.; Tezduyar, TE, Methods for FSI modeling of spacecraft parachute dynamics and cover separation, Math Models Methods Appl Sci, 23, 307-338 (2013) · Zbl 1261.76013 · doi:10.1142/S0218202513400058
[141] Takizawa, K.; Montes, D.; McIntyre, S.; Tezduyar, TE, Space-time VMS methods for modeling of incompressible flows at high Reynolds numbers, Math Models Methods Appl Sci, 23, 223-248 (2013) · Zbl 1261.76037 · doi:10.1142/s0218202513400022
[142] Takizawa, K.; Tezduyar, TE; Boben, J.; Kostov, N.; Boswell, C.; Buscher, A., Fluid-structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity, Comput Mech, 52, 1351-1364 (2013) · Zbl 1398.74097 · doi:10.1007/s00466-013-0880-5
[143] Takizawa, K.; Tezduyar, TE; Kolesar, R., FSI modeling of the Orion spacecraft drogue parachutes, Comput Mech, 55, 1167-1179 (2015) · Zbl 1325.74169 · doi:10.1007/s00466-014-1108-z
[144] Takizawa, K.; Tezduyar, TE; Terahara, T., Ram-air parachute structural and fluid mechanics computations with the space-time isogeometric analysis (ST-IGA), Comput Fluids, 141, 191-200 (2016) · Zbl 1390.76359 · doi:10.1016/j.compfluid.2016.05.027
[145] Takizawa, K.; Tezduyar, TE; Kanai, T., Porosity models and computational methods for compressible-flow aerodynamics of parachutes with geometric porosity, Math Models Methods Appl Sci, 27, 771-806 (2017) · Zbl 1361.76017 · doi:10.1142/S0218202517500166
[146] Kanai, T.; Takizawa, K.; Tezduyar, TE; Tanaka, T.; Hartmann, A., Compressible-flow geometric-porosity modeling and spacecraft parachute computation with isogeometric discretization, Comput Mech, 63, 301-321 (2019) · Zbl 1462.76145 · doi:10.1007/s00466-018-1595-4
[147] Takizawa, K.; Schjodt, K.; Puntel, A.; Kostov, N.; Tezduyar, TE, Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent, Comput Mech, 50, 675-686 (2012) · Zbl 1311.76157 · doi:10.1007/s00466-012-0760-4
[148] Takizawa, K.; Schjodt, K.; Puntel, A.; Kostov, N.; Tezduyar, TE, Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms, Comput Mech, 51, 1061-1073 (2013) · Zbl 1366.76106 · doi:10.1007/s00466-012-0790-y
[149] Takizawa, K.; Bazilevs, Y.; Tezduyar, TE; Long, CC; Marsden, AL; Schjodt, K., ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling, Math Models Methods Appl Sci, 24, 2437-2486 (2014) · Zbl 1296.76113 · doi:10.1142/S0218202514500250
[150] Takizawa, K.; Tezduyar, TE; Buscher, A.; Asada, S., Space-time fluid mechanics computation of heart valve models, Comput Mech, 54, 973-986 (2014) · Zbl 1311.74083 · doi:10.1007/s00466-014-1046-9
[151] Suito, H.; Takizawa, K.; Huynh, VQH; Sze, D.; Ueda, T.; Tezduyar, TE; Bazilevs, Y.; Takizawa, K., A geometrical-characteristics study in patient-specific FSI analysis of blood flow in the thoracic aorta, Advances in computational fluid-structure interaction and flow simulation: new methods and challenging computations, modeling and simulation in science, engineering and technology, 379-386 (2016), Berlin: Springer, Berlin · Zbl 1356.76471 · doi:10.1007/978-3-319-40827-9_29
[152] Takizawa, K.; Tezduyar, TE; Terahara, T.; Sasaki, T.; Wriggers, P.; Lenarz, T., Heart valve flow computation with the space-time slip interface topology change (ST-SI-TC) method and isogeometric analysis (IGA), Biomedical technology: modeling, experiments and simulation, lecture notes in applied and computational mechanics, 77-99 (2018), Berlin: Springer, Berlin · doi:10.1007/978-3-319-59548-1_6
[153] Takizawa, K.; Tezduyar, TE; Terahara, T.; Sasaki, T., Heart valve flow computation with the integrated space-time VMS, slip interface, topology change and isogeometric discretization methods, Comput Fluids, 158, 176-188 (2017) · Zbl 1390.76944 · doi:10.1016/j.compfluid.2016.11.012
[154] Takizawa, K.; Tezduyar, TE; Uchikawa, H.; Terahara, T.; Sasaki, T.; Shiozaki, K.; Yoshida, A.; Komiya, K.; Inoue, G.; Tezduyar, TE, Aorta flow analysis and heart valve flow and structure analysis, Frontiers in computational fluid-structure interaction and flow simulation: research from lead investigators under forty—2018, modeling and simulation in science, engineering and technology, 29-89 (2018), Berlin: Springer, Berlin · Zbl 1406.76003 · doi:10.1007/978-3-319-96469-0_2
[155] Takizawa, K.; Tezduyar, TE; Uchikawa, H.; Terahara, T.; Sasaki, T.; Yoshida, A., Mesh refinement influence and cardiac-cycle flow periodicity in aorta flow analysis with isogeometric discretization, Comput Fluids, 179, 790-798 (2019) · Zbl 1411.76184 · doi:10.1016/j.compfluid.2018.05.025
[156] Terahara, T.; Takizawa, K.; Tezduyar, TE; Bazilevs, Y.; Hsu, M-C, Heart valve isogeometric sequentially-coupled FSI analysis with the space-time topology change method, Comput Mech, 65, 1167-1187 (2020) · Zbl 1462.74119 · doi:10.1007/s00466-019-01813-0
[157] Terahara, T.; Takizawa, K.; Tezduyar, TE; Tsushima, A.; Shiozaki, K., Ventricle-valve-aorta flow analysis with the space-time isogeometric discretization and topology change, Comput Mech, 65, 1343-1363 (2020) · Zbl 1465.76118 · doi:10.1007/s00466-020-01822-4
[158] Takizawa, K.; Terahara, T.; Tezduyar, TE; Aldakheel, F.; Hudobivnik, B.; Soleimani, M.; Wessels, H.; Weissenfels, C.; Marino, M., Space-time flow computation with contact between the moving solid surfaces, Current trends and open problems in computational mechanics, 517-525 (2022), Berlin: Springer, Berlin · Zbl 1511.74062 · doi:10.1007/978-3-030-87312-7_50
[159] Terahara, T.; Kuraishi, T.; Takizawa, K.; Tezduyar, TE, Computational flow analysis with boundary layer and contact representation: II. Heart valve flow with leaflet contact, J Mech, 38, 185-194 (2022) · doi:10.1093/jom/ufac013
[160] Tezduyar, T.; Aliabadi, S.; Behr, M.; Johnson, A.; Mittal, S., Parallel finite-element computation of 3D flows, Computer, 26, 10, 27-36 (1993) · doi:10.1109/2.237441
[161] Aydinbakar, L.; Takizawa, K.; Tezduyar, TE; Kuraishi, T., Space-time VMS isogeometric analysis of the Taylor-Couette flow, Comput Mech, 67, 1515-1541 (2021) · Zbl 1468.76050 · doi:10.1007/s00466-021-02004-6
[162] Aydinbakar, L.; Takizawa, K.; Tezduyar, TE; Matsuda, D., U-duct turbulent-flow computation with the ST-VMS method and isogeometric discretization, Comput Mech, 67, 823-843 (2021) · Zbl 1490.76171 · doi:10.1007/s00466-020-01965-4
[163] Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the finite element methods: space-time formulations, iterative strategies and massively parallel implementations. In: New methods in transient analysis, PVP-Vol.246/AMD, vol 143. ASME, New York, pp 7-24
[164] Takizawa, K.; Takagi, H.; Tezduyar, TE; Torii, R., Estimation of element-based zero-stress state for arterial FSI computations, Comput Mech, 54, 895-910 (2014) · Zbl 1398.74096 · doi:10.1007/s00466-013-0919-7
[165] Takizawa, K.; Torii, R.; Takagi, H.; Tezduyar, TE; Xu, XY, Coronary arterial dynamics computation with medical-image-based time-dependent anatomical models and element-based zero-stress state estimates, Comput Mech, 54, 1047-1053 (2014) · Zbl 1311.76158 · doi:10.1007/s00466-014-1049-6
[166] Takizawa, K.; Tezduyar, TE; Sasaki, T.; Wriggers, P.; Lenarz, T., Estimation of element-based zero-stress state in arterial FSI computations with isogeometric wall discretization, Biomedical technology: modeling, experiments and simulation , lecture notes in applied and computational mechanics, lecture notes in applied and computational mechanics, 101-122 (2018), Berlin: Springer, Berlin · doi:10.1007/978-3-319-59548-1_7
[167] Takizawa, K.; Tezduyar, TE; Sasaki, T., Aorta modeling with the element-based zero-stress state and isogeometric discretization, Comput Mech, 59, 265-280 (2017) · doi:10.1007/s00466-016-1344-5
[168] Sasaki, T.; Takizawa, K.; Tezduyar, TE, Aorta zero-stress state modeling with T-spline discretization, Comput Mech, 63, 1315-1331 (2019) · Zbl 1465.74125 · doi:10.1007/s00466-018-1651-0
[169] Sasaki, T.; Takizawa, K.; Tezduyar, TE, Medical-image-based aorta modeling with zero-stress-state estimation, Comput Mech, 64, 249-271 (2019) · Zbl 1469.74085 · doi:10.1007/s00466-019-01669-4
[170] Takizawa, K.; Tezduyar, TE; Avsar, R., A low-distortion mesh moving method based on fiber-reinforced hyperelasticity and optimized zero-stress state, Comput Mech, 65, 1567-1591 (2020) · Zbl 1464.74369 · doi:10.1007/s00466-020-01835-z
[171] Tonon, P.; Sanches, RAK; Takizawa, K.; Tezduyar, TE, A linear-elasticity-based mesh moving method with no cycle-to-cycle accumulated distortion, Comput Mech, 67, 413-434 (2021) · Zbl 07360511 · doi:10.1007/s00466-020-01941-y
[172] Hughes, TJR; Cottrell, JA; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement, Comput Methods Appl Mech Eng, 194, 4135-4195 (2005) · Zbl 1151.74419 · doi:10.1016/j.cma.2004.10.008
[173] Bazilevs, Y.; Hughes, TJR, NURBS-based isogeometric analysis for the computation of flows about rotating components, Comput Mech, 43, 143-150 (2008) · Zbl 1171.76043 · doi:10.1007/s00466-008-0277-z
[174] Tezduyar, TE; Cragin, T.; Sathe, S.; Nanna, B.; Onate, E.; Garcia, J.; Bergan, P.; Kvamsdal, T., FSI computations in arterial fluid mechanics with estimated zero-pressure arterial geometry, Marine 2007 (2007), Barcelona: CIMNE, Barcelona
[175] Takizawa, K.; Tezduyar, TE; Sasaki, T., Isogeometric hyperelastic shell analysis with out-of-plane deformation mapping, Comput Mech, 63, 681-700 (2019) · Zbl 1464.74107 · doi:10.1007/s00466-018-1616-3
[176] Taniguchi, Y.; Takizawa, K.; Otoguro, Y.; Tezduyar, TE, A hyperelastic extended Kirchhoff-Love shell model with out-of-plane normal stress: I. Out-of-plane deformation, Comput Mech, 70, 247-280 (2022) · Zbl 1500.74045 · doi:10.1007/s00466-022-02166-x
[177] Bazilevs, Y.; Hsu, M-C; Kiendl, J.; Benson, DJ, A computational procedure for pre-bending of wind turbine blades, Int J Numer Methods Eng, 89, 323-336 (2012) · Zbl 1242.74026 · doi:10.1002/nme.3244
[178] Bazilevs, Y.; Deng, X.; Korobenko, A.; di Scalea, FL; Todd, MD; Taylor, SG, Isogeometric fatigue damage prediction in large-scale composite structures driven by dynamic sensor data, J Appl Mech, 82, 091008 (2015) · doi:10.1115/1.4030795
[179] Kiendl, J.; Hsu, M-C; Wu, MCH; Reali, A., Isogeometric Kirchhoff-Love shell formulations for general hyperelastic materials, Comput Methods Appl Mech Eng, 291, 280-303 (2015) · Zbl 1423.74177 · doi:10.1016/j.cma.2015.03.010
[180] Hsu, M-C; Wang, C.; Herrema, AJ; Schillinger, D.; Ghoshal, A.; Bazilevs, Y., An interactive geometry modeling and parametric design platform for isogeometric analysis, Comput Math Appl, 70, 1481-1500 (2015) · Zbl 1443.65020 · doi:10.1016/j.camwa.2015.04.002
[181] Herrema, AJ; Wiese, NM; Darling, CN; Ganapathysubramanian, B.; Krishnamurthy, A.; Hsu, M-C, A framework for parametric design optimization using isogeometric analysis, Comput Methods Appl Mech Eng, 316, 944-965 (2017) · Zbl 1439.74258 · doi:10.1016/j.cma.2016.10.048
[182] Benzaken, J.; Herrema, AJ; Hsu, M-C; Evans, JA, A rapid and efficient isogeometric design space exploration framework with application to structural mechanics, Comput Methods Appl Mech Eng, 316, 1215-1256 (2017) · Zbl 1439.65146 · doi:10.1016/j.cma.2016.12.026
[183] Kamensky, D.; Xu, F.; Lee, C-H; Yan, J.; Bazilevs, Y.; Hsu, M-C, A contact formulation based on a volumetric potential: application to isogeometric simulations of atrioventricular valves, Comput Methods Appl Mech Eng, 330, 522-546 (2018) · Zbl 1439.74224 · doi:10.1016/j.cma.2017.11.007
[184] Herrema, AJ; Johnson, EL; Proserpio, D.; Wu, MCH; Kiendl, J.; Hsu, M-C, Penalty coupling of non-matching isogeometric Kirchhoff-Love shell patches with application to composite wind turbine blades, Comput Methods Appl Mech Eng, 346, 810-840 (2019) · Zbl 1440.74400 · doi:10.1016/j.cma.2018.08.038
[185] Herrema, AJ; Kiendl, J.; Hsu, M-C, A framework for isogeometric-analysis-based optimization of wind turbine blade structures, Wind Energy, 22, 153-170 (2019) · doi:10.1002/we.2276
[186] Johnson, EL; Hsu, M-C, Isogeometric analysis of ice accretion on wind turbine blades, Comput Mech, 66, 311-322 (2020) · Zbl 1466.74051 · doi:10.1007/s00466-020-01852-y
[187] Tezduyar, TE; Sathe, S., Enhanced-discretization space-time technique (EDSTT), Comput Methods Appl Mech Eng, 193, 1385-1401 (2004) · Zbl 1079.76585 · doi:10.1016/j.cma.2003.12.029
[188] Tezduyar, TE; Osawa, Y., Finite element stabilization parameters computed from element matrices and vectors, Comput Methods Appl Mech Eng, 190, 411-430 (2000) · Zbl 0973.76057 · doi:10.1016/S0045-7825(00)00211-5
[189] Hughes, TJR; Brooks, AN; Hughes, TJR, A multi-dimensional upwind scheme with no crosswind diffusion, Finite element methods for convection dominated flows, AMD, 19-35 (1979), New York: ASME, New York · Zbl 0423.76067
[190] Tezduyar TE, Hughes TJR (1982) Development of time-accurate finite element techniques for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. NASA Technical Report NASA-CR-204772, NASA. http://www.researchgate.net/publication/24313718/
[191] Tezduyar TE, Hughes TJR (1983) Finite element formulations for convection dominated flows with particular emphasis on the compressible Euler equations. In: Proceedings of AIAA 21st aerospace sciences meeting. AIAA Paper 83-0125, Reno, Nevada. doi:10.2514/6.1983-125
[192] Hughes, TJR; Mallet, M.; Mizukami, A., A new finite element formulation for computational fluid dynamics: II. Beyond SUPG, Comput Methods Appl Mech Eng, 54, 341-355 (1986) · Zbl 0622.76074 · doi:10.1016/0045-7825(86)90110-6
[193] Tezduyar, TE; Park, YJ, Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reaction equations, Comput Methods Appl Mech Eng, 59, 307-325 (1986) · Zbl 0593.76096 · doi:10.1016/0045-7825(86)90003-4
[194] Tezduyar TE (2001) Adaptive determination of the finite element stabilization parameters. In: Proceedings of the ECCOMAS computational fluid dynamics conference 2001 (CD-ROM), Swansea, Wales, United Kingdom
[195] Tezduyar, TE; Stein, E.; Borst, RD; Hughes, TJR, Finite element methods for fluid dynamics with moving boundaries and interfaces, Encyclopedia of computational mechanics, volume 3: fluids, chapter 17 (2004), Hoboken: Wiley, Hoboken · doi:10.1002/0470091355.ecm069
[196] Takizawa, K.; Henicke, B.; Montes, D.; Tezduyar, TE; Hsu, M-C; Bazilevs, Y., Numerical-performance studies for the stabilized space-time computation of wind-turbine rotor aerodynamics, Comput Mech, 48, 647-657 (2011) · Zbl 1334.74032 · doi:10.1007/s00466-011-0614-5
[197] Takizawa K, Ueda Y, Tezduyar TE (2019) A node-numbering-invariant directional length scale for simplex elements. Math Models Methods Appl Sci 29:2719-2753. doi:10.1142/S0218202519500581 · Zbl 07897049
[198] Ueda, Y.; Otoguro, Y.; Takizawa, K.; Tezduyar, TE, Element-splitting-invariant local-length-scale calculation in B-spline meshes for complex geometries, Math Models Methods Appl Sci, 30, 2139-2174 (2020) · Zbl 1451.65140 · doi:10.1142/S0218202520500402
[199] Moghadam ME, Bazilevs Y, Hsia T-Y, Vignon-Clementel IE, Marsden AL, Modeling of Congenital Hearts Alliance (MOCHA) (2011) A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput Mech 48:277-291. doi:10.1007/s00466-011-0599-0 · Zbl 1398.76102
[200] Osawa, Y.; Tezduyar, T., 3D simulation and visualization of unsteady wake flow behind a cylinder, J Vis, 2, 127-134 (1999) · doi:10.1007/BF03181515
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.