×

On some properties of distributions possessing a bathtub-shaped failure rate average. (English) Zbl 07683007

Summary: The life distribution of a device subject to shocks governed by a homogeneous Poisson process is shown to have a bathtub failure rate average (BFRA) when the probabilities \(\bar{P}_k\) of surviving \(k\) shocks possess the corresponding discrete property. We prove closure under the formation of weak limits for BFRA distributions and explore related moment convergence issues within the BFRA family. Similar results for increasing and decreasing failure rate average distributions are obtained either independently or as consequences of our results. We also establish some results outlining the positions of various non-monotonic ageing classes such as bathtub failure rate, increasing initially then decreasing mean residual life, new worse then better than used in expectation, and increasing initially then decreasing mean time to failure in the hierarchy. Finally, an open problem is posed and a partial solution provided.

MSC:

62N05 Reliability and life testing
60K10 Applications of renewal theory (reliability, demand theory, etc.)
Full Text: DOI

References:

[1] Aarset, M. V. (1987). How to identify a bathtub hazard rate. IEEE Trans. Reliab.36, 106-108. · Zbl 0625.62092
[2] Abouammoh, A., Hindi, M. and Ahmed, A. (1988). Shock models with NBUFR and NBAFR survivals. Trabajos de Estadistica3, 97. · Zbl 0734.60086
[3] Anderson, K. K. (1987). Limit theorems for general shock models with infinite mean intershock times. J. Appl. Prob.24, 449-456. · Zbl 0631.60030
[4] Anis, M. (2012). On some properties of the IDMRL class of life distributions. J. Statist. Planning Infer.142, 3047-3055. · Zbl 1334.62168
[5] Bandyopadhyay, D. and Basu, A. P. (1989). A note on tests for exponentiality by Deshpande. Biometrika76, 403-405. · Zbl 0666.62095
[6] Barlow, R. E. (1979). Geometry of the total time on test transform. Naval Res. Logistics Quart.26, 393-402. · Zbl 0497.62089
[7] Barlow, R. E. and Proschan, F. (1965). Mathematical Theory of Reliability. Wiley, New York. · Zbl 0132.39302
[8] Barlow, R. E. and Proschan, F. (1981). Statistical Theory of Reliability and Life Testing. To Begin With, Silver Spring, MD. · Zbl 0379.62080
[9] Basu, S. K. and Bhattacharjee, M. C. (1984). On weak convergence within the HNBUE family of life distributions. J. Appl. Prob.21, 654-660. · Zbl 0543.62005
[10] Basu, S. K. and Simons, G. (1982). Moment spaces for IFR distributions: Applications and related material. In Contributions to Statistics. Essays in Honour of Norman L. Johnson, ed Sen, P. K.. Holland, North, Amsterdam. · Zbl 0525.62022
[11] Bennett, S. (1983). Log-logistic regression models for survival data. J. R. Statist. Soc. C [Appl. Statist.]32, 165-171.
[12] Bhattacharyya, D., Ghosh, S. and Mitra, M. (2020). On a non-monotonic ageing class based on the failure rate average. Commun. Statist. Theory Meth.51, 4807-4826. · Zbl 07562260
[13] Bhattacharyya, D., Khan, R. A. and Mitra, M. (2020). A test of exponentiality against DMTTF alternatives via L-statistics. Statist. Prob. Lett.165, 108853. · Zbl 1447.62046
[14] Bhattacharyya, D., Khan, R. A. and Mitra, M. (2021). A goodness of fit test for mean time to failure function in age replacement. J. Statist. Comput. Simul.91, 3637-3652. · Zbl 07497692
[15] Bhattacharyya, D., Khan, R. A. and Mitra, M. (2021). Two-sample nonparametric test for comparing mean time to failure functions in age replacement. J. Statist. Planning Infer.212, 34-44. · Zbl 1460.62055
[16] Birnbaum, Z. W., Esary, J. D. and Marshall, A. (1966). A stochastic characterization of wear-out for components and systems. Ann. Math. Statist.37. 816-825. · Zbl 0144.41904
[17] Boland, P. J. and Proschan, F. (1983). Optimum replacement of a system subject to shocks. Operat. Res.31, 697-704. · Zbl 0521.90053
[18] Deshpande, J. V., Kochar, S. C. and Singh, H. (1986). Aspects of positive ageing. J. Appl. Prob.23. 748-758. · Zbl 0612.60072
[19] Ebrahimi, N. (1999). Stochastic properties of a cumulative damage threshold crossing model. J. Appl. Prob.36, 720-732. · Zbl 0952.60081
[20] El-Neweihi, E., Proschan, F. and Sethuraman, J. (1983). A multivariate new better than used class derived from a shock model. Operat. Res.31, 177-183. · Zbl 0522.90037
[21] Esary, J. D. and Marshall, A. (1974). Families of components, and systems, exposed to a compound Poisson damage process. In Reliability and Biometry: Statistical Analysis of Life Length, eds F. Proschan and R. J. Serfling. SIAM, Philadelphia, PA, pp. 31-46.
[22] Esary, J., Marshall, A. and Proschan, F. (1973). Shock models and wear processes. Ann. Prob.1, 627-649. · Zbl 0262.60067
[23] Glaser, R. E. (1980). Bathtub and related failure rate characterizations. J. Amer. Statist. Assoc.75, 667-672. · Zbl 0497.62017
[24] Guess, F., Hollander, M. and Proschan, F. (1986). Testing exponentiality versus a trend change in mean residual life. Ann. Statist.14, 1388-1398. · Zbl 0613.62122
[25] Gupta, R. C. and Warren, R. (2001). Determination of change points of non-monotonic failure rates. Commun. Statist. Theory Meth.30, 1903-1920. · Zbl 0991.62085
[26] Izadi, M. and Manesh, S. F. (2019). Testing exponentiality against a trend change in mean time to failure in age replacement. Commun. Statist. Theory Meth.50, 3358-3370. · Zbl 07530986
[27] Izadi, M., Sharafi, M. and Khaledi, B.-E. (2018). New nonparametric classes of distributions in terms of mean time to failure in age replacement. J. Appl. Prob.55, 1238-1248. · Zbl 1409.62196
[28] Joe, H. and Proschan, F. (1984). Percentile residual life functions. Operat. Res.32, 668-678. · Zbl 0558.62084
[29] Karlin, S. (1968). Total Positivity, Vol. 1. Stanford University Press. · Zbl 0219.47030
[30] Khan, R. A., Bhattacharyya, D. and Mitra, M. (2020). A change point estimation problem related to age replacement policies. Operat. Res. Lett.48, 105-108. · Zbl 1525.90172
[31] Khan, R. A., Bhattacharyya, D. and Mitra, M. (2021). Exact and asymptotic tests of exponentiality against nonmonotonic mean time to failure type alternatives. Statist. Papers62, 3015-3045. · Zbl 1483.62168
[32] Khan, R. A., Bhattacharyya, D. and Mitra, M. (2021). On classes of life distributions based on the mean time to failure function. J. Appl. Prob.58, 289-313. · Zbl 1467.62159
[33] Khan, R. A., Bhattacharyya, D. and Mitra, M. (2021). On some properties of the mean inactivity time function. Statist. Prob. Lett.170, 108993. · Zbl 1456.90061
[34] Khan, R. A. and Mitra, M. (2019). Sharp bounds for survival probability when ageing is not monotone. Prob. Eng. Inf. Sci.33, 205-219. · Zbl 07629452
[35] Klefsjö, B. (1981). HNBUE survival under some shock models. Scand. J. Statist., 8, 39-47. · Zbl 0456.60083
[36] Klefsjö, B. (1982). On aging properties and total time on test transforms. Scand. J. Statist., 9, 37-41. · Zbl 0484.62106
[37] Klefsjö, B. (1983). Some tests against aging based on the total time on test transform. Commun. Statist. Theory Meth.12, 907-927. · Zbl 0529.62080
[38] Klefsjö, B. (1983). A useful ageing property based on the Laplace transform. J. Appl. Prob.20, 615-626. · Zbl 0526.60079
[39] Kochar, S. C. (1985). Testing exponentiality against monotone failure rate average. Commun. Statist. Theory Meth.14, 381-392.
[40] Kochar, S. C. (1990) On preservation of some partial orderings under shock models. Adv. Appl. Prob.22, 508-509. · Zbl 0713.60094
[41] Lai, C. D. and Xie, M. (2006). Stochastic Ageing and Dependence for Reliability. Springer, New York. · Zbl 1098.62130
[42] Langlands, A. O., Pocock, S. J., Kerr, G. and Gore, S. M. (1979). Long term survival of patients with breast cancer: A study of the curability of the disease. British Med. J., 2, 1247-1251.
[43] Link, W. A. (1989). Testing for exponentiality against monotone failure rate average alternatives. Commun. Statist. Theory Meth. 18. 3009-3017. · Zbl 0696.62203
[44] Loève, M. (1963). Probability Theory, 3rd edn. Van Nostrand, New York. · Zbl 0108.14202
[45] Mi, J. (1993). Discrete bathtub failure rate and upside-down bathtub mean residual life. Naval Res. Logistics40, 361-371. · Zbl 0767.62088
[46] Mi, J. (1995). Bathtub failure rate and upside-down bathtub mean residual life. IEEE Trans. Reliab.44, 388-391.
[47] Mitra, M. and Basu, S. K. (1994). On a nonparametric family of life distributions and its dual. J. Statist. Planning Infer.39, 385-397. · Zbl 0805.62017
[48] Mitra, M. and Basu, S. K. (1996). On some properties of the bathtub failure rate family of life distributions. Microelectron. Reliab.36, 679-684.
[49] Mitra, M. and Basu, S. K. (1996). Shock models leading to non-monotonic ageing classes of life distributions. J. Statist. Planning Infer.55, 131-138. · Zbl 0857.62096
[50] Mitra, M. and Khan, R. A. (2021). Reliability shock models: A brief excursion. In Applied Advanced Analytics, ed A. K. Laha. Springer, Singapore, pp. 19-42. · Zbl 1468.60104
[51] Nakagawa, T. (2007). Shock and Damage Models in Reliability Theory. Springer, New York. · Zbl 1144.62085
[52] Neath, A. A. and Samaniego, F. J. (1992). On the total time on test transform of an IFRA distribution. Statist. Prob. Lett.14, 289-291. · Zbl 0761.62140
[53] Pellerey, F. (1993). Partial orderings under cumulative damage shock models. Adv. Appl. Prob.25, 939-946. · Zbl 0802.90053
[54] Prentice, R. L. (1973). Exponential survivals with censoring and explanatory variables. Biometrika60, 279-288. · Zbl 0267.62010
[55] Shanthikumar, J. G. and Sumita, U. (1983). General shock models associated with correlated renewal sequences. J. Appl. Prob.20, 600-614. · Zbl 0526.60078
[56] Singpurwalla, N. D. (2006). The hazard potential: Introduction and overview. J. Amer. Statist. Assoc.101, 1705-1717. · Zbl 1171.62352
[57] Tiwari, R. C., Rao Jammalamadaka, S. and Zalkikar, J. N. (1989). Testing an increasing failure rate average distribution with censored data. Statistics20, 279-286. · Zbl 0678.62097
[58] Wang, F. (2000). A new model with bathtub-shaped failure rate using an additive Burr XII distribution. Reliab. Eng. Syst. Saf.70, 305-312.
[59] Wells, M. T. and Tiwari, R. C. (1991). A class of tests for testing an increasing failure-rate-average distribution with randomly right-censored data. IEEE Trans. Reliab.40, 152-156. · Zbl 0734.62094
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.