×

Lie triple centralizers on generalized matrix algebras. (English) Zbl 07681681

In this paper, the authors introduce the concept of a Lie triple centralizer on generalized matrix algebras. A linear map \(\varphi: A \to A\) is defined as a Lie triple centralizer if it satisfies \(\varphi([[a,b],c]) = [[\varphi(a),b],c]\) for all \(a, b, c \in A\). Below are the key theorems presented in the paper:
Definitions of symbols:
\(U\) denotes a generalized matrix algebra, defined as \(U = \begin{bmatrix} A & M \\ N & B \end{bmatrix}\), where \(A\) and \(B\) are algebras, \(M\) is an \((A,B)\)-bimodule, and \(N\) is a \((B,A)\)-bimodule.
\(Z(A)\) denotes the center of an algebra \(A\), defined as \(Z(A) = \{a \in A : ac = ca \text{ for all } c \in A\}\).
\(Z(U)\) denotes the center of the algebra \(U\), with \(Z(U) = \begin{bmatrix} Z(A) & 0 \\ 0 & Z(B) \end{bmatrix}\) under certain conditions.
\(M\) and \(N\) are bimodules that satisfy the conditions: if \(a \in A\), \(aM = 0\), and \(Na = 0\), then \(a = 0\). Similarly, if \(b \in B\), \(Mb = 0\), and \(bN = 0\), then \(b = 0\).
\(\pi_A\) and \(\pi_B\) are projection mappings defined as \(\pi_A\left(\begin{bmatrix} a & m \\ n & b \end{bmatrix}\right) = a\) and \(\pi_B\left(\begin{bmatrix} a & m \\ n & b \end{bmatrix}\right) = b\).

Main theorems:
Theorem 3.1: A linear map \(\varphi: U \to U\) is a Lie triple centralizer if and only if \(\varphi\) has the form: \[ \varphi \left( \begin{bmatrix} a & m \\ n & b \end{bmatrix} \right) = \begin{bmatrix} \alpha_1(a) + \beta_1(b) & \tau_2(m) \\ \gamma_3(n) & \alpha_4(a) + \beta_4(b) \end{bmatrix} \] where \(\alpha_1 : A \to A\), \(\beta_1 : B \to [A,A]'\), \(\tau_2 : M \to M\), \(\gamma_3 : N \to N\), \(\alpha_4 : A \to [B,B]'\), and \(\beta_4 : B \to B\) are linear mappings satisfying the following conditions:
(1)
\(\alpha_1\) is a Lie triple centralizer on \(A\), \(\alpha_4([[a_1, a_2], a_3]) = 0\), and \(\alpha_1(mn) - \beta_1(nm) = \tau_2(m)n = m\gamma_3(n)\) for all \(m \in M\) and \(n \in N\).
(2)
\(\beta_4\) is a Lie triple centralizer on \(B\), \(\beta_1([[b_1, b_2], b_3]) = 0\), and \(\alpha_4(nm) - \beta_4(mn) = n\tau_2(m) = \gamma_3(n)m\) for all \(m \in M\) and \(n \in N\).
(3)
\(\tau_2(am) = a\tau_2(m) = \alpha_1(a)m - m\alpha_4(a)\) and \(\tau_2(mb) = \tau_2(m)b = m\beta_4(b) - \beta_1(b)m\) for any \(a \in A\), \(b \in B\), and \(m \in M\).
(4)
\(\gamma_3(na) = \gamma_3(n)a = n\alpha_1(a) - \alpha_4(a)n\) and \(\gamma_3(bn) = b\gamma_3(n) = \beta_4(b)n - n\beta_1(b)\) for any \(a \in A\), \(b \in B\), and \(n \in N\).
Theorem 3.3: Let \(U\) satisfy the conditions: \begin{align*} & a \in A, aM = 0 \text{ and } Na = 0 \Rightarrow a = 0, \\ & b \in B, Mb = 0 \text{ and } bN = 0 \Rightarrow b = 0. \end{align*} A linear map \(\varphi : U \to U\) is a proper Lie triple centralizer if and only if \(\alpha_4(A) \subseteq \pi_B(Z(U))\) and \(\beta_1(B) \subseteq \pi_A(Z(U))\).
Corollary 3.4: Under the same conditions as Theorem 3.3, if either \(\pi_B(Z(U)) = Z(B)\) or \([[A,A],A] = A\) holds, then any Lie triple centralizer on \(U\) is a proper Lie triple centralizer.
Theorem 4.2: Let \(U\) satisfy the conditions stated in Theorem 3.3. If \(\Lambda: U \to U\) is a generalized Lie triple derivation associated with a Lie triple derivation \(\xi: U \to U\), then \(\Lambda(A) = \delta(A) + d(A) + \psi(A) + \lambda A\) for any \(A \in U\), where \(\delta\) is a derivation on \(U\), \(d\) is a singular Jordan derivation on \(U\), \(\lambda \in Z(U)\), and \(\psi: U \to Z(U)\) is a linear map that vanishes on \([[U, U], U]\).

These results extend the theory of Lie triple centralizers and provide a foundation for further studies in the Lie structure of algebras.

MSC:

16W25 Derivations, actions of Lie algebras
47B47 Commutators, derivations, elementary operators, etc.
15A78 Other algebras built from modules
16W10 Rings with involution; Lie, Jordan and other nonassociative structures
Full Text: DOI

References:

[1] Behfar, R. and Ghahramani, H., Lie maps on triangular algebras without assuming unity, preprint.? · Zbl 1484.16048
[2] Benkovič, D., Generalized Lie derivations on triangular algebras, Linear Algebra Appl, 434, 1532-1544 (2011) · Zbl 1216.16032 · doi:10.1016/j.laa.2010.11.039
[3] Benkovič, D., Lie triple derivations of unital algebras with idempotents, Linear and Multilinear Algebra, 63, 141-165 (2015) · Zbl 1315.16037 · doi:10.1080/03081087.2013.851200
[4] Benkovič, D., Generalized Lie derivations of unital algebras with idempotents, Operators and Matrices, 12, 357-367 (2018) · Zbl 1391.16048 · doi:10.7153/oam-2018-12-23
[5] Cheung, W. S., Lie derivation of triangular algebras, Linear Multilinear Algebra, 51, 299-310 (2003) · Zbl 1060.16033 · doi:10.1080/0308108031000096993
[6] Fadaee, B.; Ghahramani, H., Lie centralizers at the zero products on generalized matrix algebras, Journal of Algebra and Its Applications (2021) · Zbl 1509.47050 · doi:10.1142/S0219498822501651
[7] Fošner, A.; Jing, W., Lie centralizers on triangular rings and nest algebras, Adv. Oper. Theory, 4, 342-350 (2019) · Zbl 1403.16038 · doi:10.15352/aot.1804-1341
[8] Ghahramani, H., Additive mappings derivable at nontrivial idempotents on Banach algebras, Linear and Multilinear Algebra, 60, 725-742 (2012) · Zbl 1275.47080 · doi:10.1080/03081087.2011.628664
[9] Ghahramani, H.; Jing, W., Lie centralizers at zero products on a class of operator algebras, Ann. Funct. Anal, 12, 1-12 (2021) · Zbl 1521.47115 · doi:10.1007/s43034-021-00123-y
[10] Jabeen, A., Lie (Jordan) centralizers on generalized matrix algebras, Commun. Algebra, 49, 278-291 (2020) · Zbl 1464.16040 · doi:10.1080/00927872.2020.1797759
[11] Jacobson, N. (1962), Interscience Publishers: Interscience Publishers, New York · Zbl 0121.27504
[12] Krylov, P. A., Isomorphism of generalized matrix rings, Algebra Logika, 47, 456-463 (2008) · Zbl 1155.16302 · doi:10.1007/s10469-008-9016-y
[13] Liu, L., On nonlinear Lie centralizers of generalized matrix algebras, Linear and Multilinear Algebra (2020) · Zbl 07596080 · doi:10.1080/03081087.2020.1810605
[14] McCrimmon, K., A Taste of Jordan Algebras (2004), Springer: Springer, New York · Zbl 1044.17001
[15] Miers, C. R., Lie triple derivations of von Neumann algebras, Proc. Amer. Math. Soc, 71, 57-61 (1978) · Zbl 0384.46047 · doi:10.1090/S0002-9939-1978-0487480-9
[16] Morita, K., Duality for modules and its applications to the theory of rings with minimum condition, Rep. Tokyo Kyoiku Diagaku Sect. A, 6, 83-142 (1958) · Zbl 0080.25702
[17] Qi, X.; Hou, J., Characterization of Lie derivations on prime rings, Commun. Algebra, 39, 3824-3835 (2011) · Zbl 1247.16043 · doi:10.1080/00927872.2010.512588
[18] Xiao, Z.; Wei, F., Commuting mappings of generalized matrix algebras, Linear Algebra Appl, 433, 2178-2197 (2010) · Zbl 1206.15016 · doi:10.1016/j.laa.2010.08.002
[19] Xiao, Z.; Wei, F., Lie triple derivations of triangular algebras, Linear Algebra Appl, 437, 5, 1234-1249 (2012) · Zbl 1253.16042 · doi:10.1016/j.laa.2012.04.015
[20] Zhang, J.; Wu, B.; Cao, H., Lie triple derivations of nest algebras, Linear Algebra Appl, 416, 559-567 (2006) · Zbl 1102.47060 · doi:10.1016/j.laa.2005.12.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.