×

Hypergeometric fractional derivatives formula of shifted Chebyshev polynomials: tau algorithm for a type of fractional delay differential equations. (English) Zbl 07678011

Summary: This paper presents an explicit formula that approximates the fractional derivatives of Chebyshev polynomials of the first-kind in the Caputo sense. The new expression is given in terms of a terminating hypergeometric function of the type \(_4F_3(1)\). The integer derivatives of Chebyshev polynomials of the first-kind are deduced as a special case of the fractional ones. The formula will be applied for obtaining a spectral solution of a certain type of fractional delay differential equations with the aid of an explicit Chebyshev tau method. The shifted Chebyshev polynomials of the first-kind are selected as basis functions and the spectral tau method is employed for obtaining the desired approximate solutions. The convergence and error analysis are discussed. Numerical results are presented illustrating the efficiency and accuracy of the proposed algorithm.

MSC:

11B83 Special sequences and polynomials
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
34A08 Fractional ordinary differential equations
34K06 Linear functional-differential equations
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs

Software:

SumTools
Full Text: DOI

References:

[1] S. M. A. Pahnehkolaei, A. Alfi, and J. A. T. Machado, “Stability analysis of fractional quaternion-valued leaky integrator echo state neural networks with multiple time-varying delays,” Neurocomputing, vol. 331, pp. 388-402, 2019. doi:10.1016/j.neucom.2018.11.021. · doi:10.1016/j.neucom.2018.11.021
[2] O. Nikan, A. Golbabai, J. A. T. Machado, and T. Nikazad, “Numerical solution of the fractional Rayleigh-Stokes model arising in a heated generalized second-grade fluid,” Eng. Comput., 2021. doi:10.1007/s00366-019-00913-y. · doi:10.1007/s00366-019-00913-y
[3] D. Cao Labora, A. M. Lopes, and J. A. T. Machado, “Time-fractional dependence of the shear force in some beam type problems with negative Young modulus,” Appl. Math. Model., vol. 80, pp. 668-682, 2020. doi:10.1016/j.apm.2019.11.054. · Zbl 1481.74429 · doi:10.1016/j.apm.2019.11.054
[4] J. A. T. Machado and A. M. Lopes, “On the mathematical modeling of soccer dynamics,” Commun. Nonlinear Sci. Numer. Simulat., vol. 53, pp. 142-153, 2017. doi:10.1016/j.cnsns.2017.04.024. · Zbl 1510.91003 · doi:10.1016/j.cnsns.2017.04.024
[5] W. M. Abd-Elhameed and Y. H. Youssri, “Spectral solutions for fractional differential equations via a novel Lucas operational matrix of fractional derivatives,” Rom. J. Phys., vol. 61, pp. 795-813, 2016.
[6] M. A. Zaky, S. S. Ezz-Eldien, E. H. Doha, J. A. T. Machado, and A. H. Bhrawy, “An efficient operational matrix technique for multidimensional variable-order time fractional diffusion equations,” J. Comput. Nonlinear Dynam., vol. 11, p. 061002, 2016. doi:10.1115/1.4033723. · doi:10.1115/1.4033723
[7] M. A. Zaky and J. A. T. Machado, “Multi-dimensional spectral tau methods for distributed-order fractional diffusion equations,” Comput. Math. Appl., vol. 79, pp. 476-488, 2020. doi:10.1016/j.camwa.2019.07.008. · Zbl 1443.65257 · doi:10.1016/j.camwa.2019.07.008
[8] W. M. Abd-Elhameed and Y. H. Youssri, “Generalized Lucas polynomial sequence approach for fractional differential equations,” Nonlinear Dynam., vol. 89, pp. 1341-1355, 2017. doi:10.1007/s11071-017-3519-9. · Zbl 1384.41003 · doi:10.1007/s11071-017-3519-9
[9] M. ur Rehman and R. A. Khan, “The Legendre wavelet method for solving fractional differential equations,” Commun. Nonlinear Sci. Numer. Simulat., vol. 16, pp. 4163-4173, 2011. doi:10.1016/j.cnsns.2011.01.014. · Zbl 1222.65063 · doi:10.1016/j.cnsns.2011.01.014
[10] V. Daftardar-Gejj, and H. Jafari, “Solving a multi-order fractional differential equation using Adomian decomposition,” Appl. Math. Comput., vol. 189, pp. 541-548, 2007. doi:10.1016/j.amc.2006.11.129. · Zbl 1122.65411 · doi:10.1016/j.amc.2006.11.129
[11] M. M. Khader and A. S. Hendy, “The approximate and exact solutions of the fractional-order delay differential equations using Legendre pseudo-spectral method,” Int. J. Pure Appl. Math., vol. 74, pp. 287-297, 2012. · Zbl 1246.34064
[12] M. M. Khader and A. S. Hendy, “Fractional Chebyshev finite difference method for solving the fractional-order delay BVPs,” Int. J. Comput. Methods. vol. 12, p. 1550033, 2015. doi:10.1142/s0219876215500334. · Zbl 1359.65128 · doi:10.1142/s0219876215500334
[13] H. Hassani, Z. Avazzadeh, and J. A. T. Machado, “Numerical approach for solving variable-order space-time fractional telegraph equation using transcendental Bernstein series,” Eng. Comput., vol. 36, pp. 867-878, 2020. doi:10.1007/s00366-019-00736-x. · doi:10.1007/s00366-019-00736-x
[14] A. Saadatmandi and M. Dehghan, “A tau approach for solution of the space fractional diffusion equation,” Comput. Math. Appl., vol. 62, pp. 1135-1142, 2011. doi:10.1016/j.camwa.2011.04.014. · Zbl 1228.65203 · doi:10.1016/j.camwa.2011.04.014
[15] B. P. Moghaddam, A. Dabiri, A. M. Lopes, and J. A. T. Machado, “Numerical solution of mixed-type fractional functional differential equations using modified Lucas polynomials,” Comput. Appl. Math., vol. 38, p. 46, 2019. doi:10.1007/s40314-019-0813-9. · Zbl 1449.65143 · doi:10.1007/s40314-019-0813-9
[16] M. M. Khader, “The use of generalized Laguerre polynomials in spectral methods for fractional order delay differential equations,” J. Comput. Nonlinear Dynam., vol. 8, p. 041018, 2013. doi:10.1115/1.4024852. · doi:10.1115/1.4024852
[17] M. M. Khader and M. Adel, “Numerical treatment of the fractional modeling on Susceptible Infected-Recovered Equations with a constant vaccination rate by using GEM,” Int. J. Nonlinear Sci. Numer. Stimul, vol. 20, pp. 69-75, 2018. doi:10.1515/ijnsns-2018-0187. · Zbl 07020742 · doi:10.1515/ijnsns-2018-0187
[18] M. M. Khader, “Using the generalized Adams-Bashforth-Moulton method for obtaining the numerical solution of some variable-order fractional dynamical models,” Int. J. Nonlinear Sci. Numer. Stimul., vol. 22, no. 1, pp. 93-98, 2020. doi:10.1515/ijnsns-2019-0307. · Zbl 1525.65068 · doi:10.1515/ijnsns-2019-0307
[19] M. A. Abdelkawy, A. Z. M. Amin, A. H. Bhrawy, J. A. T. Machado, and A. M. Lopes, “Jacobi collocation approximation for solving multi-dimensional Volterra integral equations,” Int. J. Nonlinear Sci. Numer. Stimul., vol. 18, pp. 411-425, 2017. doi:10.1515/ijnsns-2016-0160. · Zbl 1401.65148 · doi:10.1515/ijnsns-2016-0160
[20] S. S. Goh, T. N. T. Goodman, and S. L. Lee, “Orthogonal polynomials, biorthogonal polynomials and spline functions,” Appl. Comput. Harmon. Anal., vol. 52, pp. 141-164, 2021. doi:10.1016/j.acha.2020.01.001. · Zbl 1460.41004 · doi:10.1016/j.acha.2020.01.001
[21] E. H. Doha, W. M. Abd-Elhameed, and M. A. Bassuony, “On using third and fourth kinds Chebyshev operational matrices for solving Lane-Emden type equations,” Rom. J. Phys., vol. 60, pp. 281-292, 2015. http://www.nipne.ro/rjp/2015_60_3-4/RomJPhys.60.p281.pdf.
[22] E. H. Doha and W. M. Abd-Elhameed, “On the coefficients of integrated expansions and integrals of Chebyshev polynomials of third and fourth kinds,” Bull. Malays. Math. Sci. Soc., vol. 37, pp. 383-398, 2014. https://www.emis.de/journals/BMMSS/pdf/v37n2/v37n2p8.pdf. · Zbl 1295.42012
[23] W. Koepf and M. Masjed-Jamei, “A generic polynomial solution for the differential equation of hypergeometric type and six sequences of orthogonal polynomials related to it,” Integr. Trans. Spec. A: Funct., vol. 17, pp. 559-576, 2006. doi:10.1080/10652460600725234. · Zbl 1099.33007 · doi:10.1080/10652460600725234
[24] W. M. Abd-Elhameed and Y. H. Youssri, “Fifth-kind orthonormal Chebyshev polynomial solutions for fractional differential equations,” Comput. Appl. Math., vol. 37, pp. 2897-2921, 2018. doi:10.1007/s40314-017-0488-z. · Zbl 1404.65074 · doi:10.1007/s40314-017-0488-z
[25] W. M. Abd-Elhameed and Y. H. Youssri, “Sixth-kind Chebyshev spectral approach for solving fractional differential equations,” Int. J. Nonlinear Sci. Numer. Stimul., vol. 20, pp. 191-203, 2019. doi:10.1515/ijnsns-2018-0118. · Zbl 07048618 · doi:10.1515/ijnsns-2018-0118
[26] E. H. Doha and W. M. Abd-Elhameed, “Accurate spectral solutions for the parabolic and elliptic partial differential equations by the ultraspherical tau method,” J. Comput. Appl. Math., vol. 181, pp. 24-45, 2005. doi:10.1016/j.cam.2004.11.015. · Zbl 1071.65136 · doi:10.1016/j.cam.2004.11.015
[27] F. Mohammadi and C. Cattani, “A generalized fractional-order Legendre wavelet Tau method for solving fractional differential equations,” J. Comput. Appl. Math., vol. 339, pp. 306-316, 2018. doi:10.1016/j.cam.2017.09.031. · Zbl 1464.65079 · doi:10.1016/j.cam.2017.09.031
[28] F. Costabile and A. Napoli, “Collocation for high order differential equations with two-points Hermite boundary conditions,” Appl. Numer. Math., vol. 387, pp. 157-167, 2015. doi:10.1016/j.apnum.2014.09.008. · Zbl 1302.65168 · doi:10.1016/j.apnum.2014.09.008
[29] F. Costabile and A. Napoli, “A method for high-order multipoint boundary value problems with Birkhoff-type conditions,” Int. J. Comput. Math., vol. 92, pp. 192-200, 2015. doi:10.1080/00207160.2014.889292. · Zbl 1308.65123 · doi:10.1080/00207160.2014.889292
[30] W. M. Abd-Elhameed, “On solving linear and nonlinear sixth-order two point boundary value problems via an elegant harmonic numbers operational matrix of derivatives,” CMES Comput. Model. Eng. Sci., vol. 101, pp. 159-185, 2014. doi:10.3970/cmes.2014.101.159. · Zbl 1356.65190 · doi:10.3970/cmes.2014.101.159
[31] E. H. Doha, W. M. Abd-Elhameed, and Y. H. Youssri, “Second kind Chebyshev operational matrix algorithm for solving differential equations of Lane-Emden type,” N. Astron., vol. 23, pp. 113-117, 2013. doi:10.1016/j.newast.2013.03.002. · doi:10.1016/j.newast.2013.03.002
[32] W. M. Abd-Elhameed and Y. H. Youssri, “A novel operational matrix of Caputo fractional derivatives of Fibonacci polynomials: spectral solutions of fractional differential equations,” Entropy, vol. 18, p. 345, 2016. doi:10.3390/e18100345. · doi:10.3390/e18100345
[33] Y. L. Luke, The Special Functions and Their Approximations, New York, Academic Press, 1969. · Zbl 0193.01701
[34] N. N. Lebedev and R. A. Silverman, Special Functions and Their Applications, New York, Dover Publications, 1972. · Zbl 0271.33001
[35] H. Chaggara and W. Koepf, “On linearization coefficients of Jacobi polynomials,” Appl. Math. Lett., vol. 23, pp. 609-614, 2010. doi:10.1016/j.aml.2010.01.021. · Zbl 1189.33013 · doi:10.1016/j.aml.2010.01.021
[36] E. H. Doha, “The coefficients of differentiated expansions and derivatives of ultraspherical polynomials,” Comput. Math. Appl., vol. 21, pp. 115-122, 1991. doi:10.1016/0898-1221(91)90089-m. · Zbl 0723.33008 · doi:10.1016/0898-1221(91)90089-m
[37] E. H. Doha, “On the coefficients of differentiated expansions and derivatives of Jacobi polynomials,” J. Phys. A: Math. Gen., vol. 35, pp. 3467-3478, 2002. doi:10.1088/0305-4470/35/15/308. · Zbl 0997.33004 · doi:10.1088/0305-4470/35/15/308
[38] I. Podlubny, “Fractional Differential Equations: An Introduction to Fractional Derivatives,” in Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198, Academic Press, 1998. · Zbl 0922.45001
[39] E. D. Rainville, Special Functions, New York, Chelsea, 1960. · Zbl 0092.06503
[40] W. Koepf, Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities, Braunschweig, Germany, Vieweg, 1998. · Zbl 0909.33001
[41] P. Rahimkhani, Y. Ordokhani, and E. Babolian, “Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet,” J. Comput. Appl. Math., vol. 309, pp. 493-510, 2017. doi:10.1016/j.cam.2016.06.005. · Zbl 1468.65089 · doi:10.1016/j.cam.2016.06.005
[42] H. Brunner, Q. Huang, and H. Xie, “Discontinuous Galerkin methods for delay differential equations of pantograph type,” SIAM J. Numer. Anal., vol. 48, pp. 1944-1967, 2010. doi:10.1137/090771922. · Zbl 1219.65076 · doi:10.1137/090771922
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.