×

Lump solutions to a generalized nonlinear PDE with four fourth-order terms. (English) Zbl 07677990

Summary: A combined fourth-order (2 + 1)-dimensional nonlinear partial differential equation which contains four fourth-order nonlinear terms and all second-order linear terms is formulated. This equation covers three generalized KP, Hirota-Satsuma-Ito, and Calogero-Bogoyavlenskii-Schiff equations as examples, which have physical applications in the study of various nonlinear phenomena in nature. In terms of some settings of the coefficients, a class of lump solutions is constructed by the Hirota bilinear method and the solutions are calculated through the symbolic computation system of Maple. Meanwhile, the relation between the coefficients and the solution is explored. Two special lump solutions are generated by taking proper values for the involved coefficients and parameters, and their dynamic behaviors are studied, as illustrative examples. The primary advantage of the Hirota bilinear method is to transform a nonlinear equation into a bilinear one so that the targeted equation can be easily studied.

MSC:

35-XX Partial differential equations
65-XX Numerical analysis

Software:

Maple
Full Text: DOI

References:

[1] W. X. Ma, “Lump solutions to the Kadomtsev-Petviashvili equation,” Phys. Lett. A, vol. 379, pp. 1975-1978, 2015. doi:10.1016/j.physleta.2015.06.061. · Zbl 1364.35337 · doi:10.1016/j.physleta.2015.06.061
[2] X. M. Zhu, D. J. Zhang, and D. Y. Chen, “Lump solutions of Kadomtsev-PetviashviliI equation in non-uniform media,” Theor. Phys., vol. 55, no. 1, pp. 13-19, 2011. doi:10.1088/0253-6102/55/1/03. · Zbl 1225.35212 · doi:10.1088/0253-6102/55/1/03
[3] Z. Lu and Y. Chen, “Construction of rogue wave and lump solutions for nonlinear evolution equations,” Eur. Phys. J. B, vol. 88, no. 7, pp. 1-5, 2015. doi:10.1140/epjb/e2015-60099-0. · doi:10.1140/epjb/e2015-60099-0
[4] K. Imai and K. Nozaki, “Lump solutions of the Ishimori-II equation,” Prog. Theor. Phys., vol. 96, no. 3, pp. 521-526, 1996. doi:10.1143/ptp.96.521. · doi:10.1143/ptp.96.521
[5] W. X. Ma and Y. Zhou, “Lump solutions to nonlinear differential equations via Hirota bilinear forms,” J. Differ. Equ., vol. 264, pp. 2633-2659, 2018. doi:10.1016/j.jde.2017.10.033. · Zbl 1387.35532 · doi:10.1016/j.jde.2017.10.033
[6] R. Hirota, The Direct Method in Soliton Theory, Cambridge, Cambridge University Press, 2004. · Zbl 1099.35111
[7] C. R. Gilson and J. J. C. Nimmo, “Lump solutions of the BKP equation,” Phys. Lett., vol. 147, pp. 472-476, 1990. doi:10.1016/0375-9601(90)90609-r. · doi:10.1016/0375-9601(90)90609-r
[8] J. Y. Yang and W. X. Ma, “Lump solutions of the BKP equation by symbolic computation,” Int. J. Mod. Phys. B, vol. 30, p. 1640028, 2016. doi:10.1142/s0217979216400282. · Zbl 1357.35080 · doi:10.1142/s0217979216400282
[9] S. Saez and F. R. Romero, “The Calogero-Bogoyavlenskii-Schiff equation in 2+1 dimensions,” Theor. Math. Phys., vol. 137, pp. 1367-1377, 2003. · Zbl 1178.35113
[10] S. T. Chen and W. X. Ma, “Lump solutions of a generalized Calogero-Bogoyavlenskii-Schiff equation,” Comput. Math. Appl., vol. 76, pp. 1680-1685, 2018. doi:10.1016/j.camwa.2018.07.019. · Zbl 1434.35153 · doi:10.1016/j.camwa.2018.07.019
[11] Y. Zhou, S. Manukure, and W. X. Ma, “Lump and lump-soliton solutions to the Hirota-Satsuma-Ito equation,” Commun. Nonlinear Sci. Numer. Simulat., vol. 68, pp. 56-62, 2019. doi:10.1016/j.cnsns.2018.07.038. · Zbl 1509.35101 · doi:10.1016/j.cnsns.2018.07.038
[12] J. G. Liu, M. Eslami, H. Rezazadeh, and M. Mirzazadeh, “Rational solutions and lump solutions to a non-isospectral and generalized variable-coefficient Kadomtsev-Petviashvili equation,” Nonlinear Dynam., vol. 95, pp. 1027-1033, 2019. doi:10.1007/s11071-018-4612-4. · Zbl 1439.35418 · doi:10.1007/s11071-018-4612-4
[13] S. T. Chen and W. X. Ma, “Lump solutions to a generalized Bogoyavlensky-Konopelchenko equation,” Front. Math. China, vol. 13, pp. 525-534, 2018. doi:10.1007/s11464-018-0694-z. · Zbl 1403.35259 · doi:10.1007/s11464-018-0694-z
[14] W. X. Ma, J. Li, and C. M. Khalique, “A study on lump solutions to a generalized Hirota-Satsuma-Ito equation in (2+1)-dimensions,” Complexity, vol. 2018, p. 9059858, 2018. doi:10.1155/2018/9059858. · Zbl 1407.35177 · doi:10.1155/2018/9059858
[15] W. X. Ma, “A search for lump solutions to a combined fourth-order nonlinear PDE in (2+1)-dimensions,” J. Appl. Anal. Comput., vol. 9, pp. 1319-1332, 2019. doi:10.11948/2156-907x.20180227. · Zbl 1464.35287 · doi:10.11948/2156-907x.20180227
[16] J. Y. Yang, W. X. Ma, and C. M. Khalique, “Determining lump solutions for a combined soliton equation in (2+1)-dimensions,” Eur. Phys. J. Plus, vol. 135, p. 494, 2020. doi:10.1140/epjp/s13360-020-00463-z. · doi:10.1140/epjp/s13360-020-00463-z
[17] Q. X. Chen, W. X. Ma, and Y. H. Huang, “Study of lump solutions to an extended KPII equation combined with a new fourth-order term,” Phys. Scripta, vol. 95, 2020, Art no. 095207. doi:10.1088/1402-4896/abaad5. · doi:10.1088/1402-4896/abaad5
[18] J. Y. Yang, W. X. Ma, and Z. Y. Qin, “Lump and lump-soliton to the (2+1)-dimensional Ito equation,” Anal. Math. Phys., vol. 8, pp. 427-436, 2018. doi:10.1007/s13324-017-0181-9. · Zbl 1403.35261 · doi:10.1007/s13324-017-0181-9
[19] W. X. Ma, “Interaction solutions to the Hirota-Satsuma-Ito equation in (2+1)-dimensions,” Front. Math. China, vol. 14, pp. 619-629, 2019. doi:10.1007/s11464-019-0771-y. · Zbl 1421.35314 · doi:10.1007/s11464-019-0771-y
[20] W. X. Ma, Y. Zhou, and R. Dougherty, “Lump-type solutions to nonlinear differential equations derived from generalized bilinear equations,” Int. J. Mod. Phys. B, vol. 30, p. 1640018, 2016. doi:10.1142/s021797921640018x. · Zbl 1375.37162 · doi:10.1142/s021797921640018x
[21] Y. N. Tang, S. Q. Tao, and G. Qing, “Lump solutions and interaction phenomenon of them for two classes of nonlinear evolution equations,” Comput. Math. Appl., vol. 72, pp. 2334-2342, 2016. doi:10.1016/j.camwa.2016.08.027. · Zbl 1372.35268 · doi:10.1016/j.camwa.2016.08.027
[22] J. B. Zhang and W. X. Ma, “Mixed lump-kink solutions to the BKP equation,” Comput. Math. Appl., vol. 74, pp. 591-596, 2017. doi:10.1016/j.camwa.2017.05.010. · Zbl 1387.35540 · doi:10.1016/j.camwa.2017.05.010
[23] T. C. Kofane, M. Fokou, A. Mohamadou, and E. Yomba, “Lump solutions and interaction phenomenon to the third-order nonlinear evolution equation,” Eur. Phys. J. Plus, vol. 132, pp. 465-473, 2017. doi:10.1140/epjp/i2017-11747-6. · doi:10.1140/epjp/i2017-11747-6
[24] H. Q. Zhao and W. X. Ma, “Mixed lump-kink solutions to the KP equation,” Comput. Math. Appl., vol. 74, pp. 1399-1405, 2017. doi:10.1016/j.camwa.2017.06.034. · Zbl 1394.35461 · doi:10.1016/j.camwa.2017.06.034
[25] W. X. Ma, X. L. Yong, and H. Q. Zhang, “Diversity of interaction solutions to the (2+1)-dimensional Ito equation,” Comput. Math. Appl., vol. 75, pp. 289-295, 2018. doi:10.1016/j.camwa.2017.09.013. · Zbl 1416.35232 · doi:10.1016/j.camwa.2017.09.013
[26] W. X. Ma, “N-soliton solutions and the Hirota conditions in (1+1)-dimensions,” Int. J. Nonlinear Sci. Numer. Stimul., vol. 23, no. 1, pp. 123-133, 2022. doi:10.1515/ijnsns-2020-0214. · Zbl 07533159 · doi:10.1515/ijnsns-2020-0214
[27] W. X. Ma, “N-soliton solutions and the Hirota conditions in (2+1)-dimensions,” Opt. Quant. Electron., vol. 52, p. 511, 2020. doi:10.1007/s11082-020-02628-7. · doi:10.1007/s11082-020-02628-7
[28] W. X. Ma, “N-soliton solution and the Hirota condition of a (2+1)-dimensional combined equation,” Math. Comput. Simulat., vol. 190, no. 2021, pp. 270-279. · Zbl 1540.35103
[29] W. X. Ma, X. L. Yong, and X. Lü, “Soliton solutions to the B-type Kadomtsev-Petviashvili equation under general dispersion relations,” Wave Motion, vol. 103, p. 102719, 2021. doi:10.1016/j.wavemoti.2021.102719. · Zbl 1524.35508 · doi:10.1016/j.wavemoti.2021.102719
[30] W. X. Ma, “N-soliton solution of a combined pKP-BKP equation,” J. Geom. Phys., vol. 165, p. 104191, 2021. doi:10.1016/j.geomphys.2021.104191. · Zbl 1470.35310 · doi:10.1016/j.geomphys.2021.104191
[31] X. Y. Gao, Y. J. Guo, and W. R. Shan, “Shallow water in an open sea or a wide channel: auto- and non-auto-Bäcklund transformations with solitons for a generalized (2+1)-dimensional dispersive long-wave system,” Chaos, Solit. Fractals, vol. 138, p. 109950, 2020. doi:10.1016/j.chaos.2020.109950. · Zbl 1490.35314 · doi:10.1016/j.chaos.2020.109950
[32] X. Y. Gao, Y. J. Guo, and W. R. Shan, “Water-wave symbolic computation for the Earth, Enceladus and Titan: the higher-order Boussinesq-Burgers system, auto- and non-auto-Bäcklund transformations,” Appl. Math. Phys., vol. 104, p. 106170, 2020. doi:10.1016/j.aml.2019.106170. · Zbl 1437.86001 · doi:10.1016/j.aml.2019.106170
[33] X. Zhao, B. Tian, Q. X. Qu, Y. Q. Yuan, X. X. Du, and M. X. Chu, “Dark-dark solitons for the coupled spatially modulated Gross-Pitaevskii system in the Bose-Einstein condensation,” Mod. Phys. Lett. B, vol. 34, p. 2050282, 2020. doi:10.1142/s0217984920502826. · doi:10.1142/s0217984920502826
[34] W. X. Ma, “Lump-type solutions to the (3+1)-dimensional Jimbo-Miwa equation,” Int. J. Nonlinear Sci. Numer. Stimul., vol. 17, pp. 355-359, 2016. · Zbl 1401.35273
[35] J. Y. Yang and W. X. Ma, “Abundant lump-type solutions of the Jimbo-Miwa equation in (3+1)-dimensional,” Comput. Math. Appl., vol. 73, pp. 220-225, 2017. doi:10.1016/j.camwa.2016.11.007. · Zbl 1368.35238 · doi:10.1016/j.camwa.2016.11.007
[36] F. H. Qi, W. X. Ma, Q. X. Qu, and P. Wang, “Lump-type and interaction solutions to an extended (3+1)-dimensional Jimbo-Miwa equation,” Int. J. Mod. Phys. B, vol. 34, p. 2050043, 2020. doi:10.1142/s0217979220500435. · Zbl 1434.35169 · doi:10.1142/s0217979220500435
[37] C. N. Gao and Y. H. Wang, “Lump-type solutions, interaction solutions, and periodic lump solutions of the generalized (3+1)-dimensional Burgers equation,” Int. J. Mod. Phys. B, vol. 35, p. 2150107, 2021. doi:10.1142/s0217984921501074. · doi:10.1142/s0217984921501074
[38] M. Wang, B. Tian, Y. Sun, and Z. Zhang, “Lump, mixed lump-stripe and rogue wave-stripe solutions of a (3+1)-dimensional nonlinear wave equation for a liquid with gas bubbles,” Comput. Math. Appl., vol. 79, pp. 576-587, 2020. doi:10.1016/j.camwa.2019.07.006. · Zbl 1443.76233 · doi:10.1016/j.camwa.2019.07.006
[39] J. G. Liu, M. Eslami, H. Rezazadeh, and M. Mirzazadeh, “The dynamical behavior of mixed type lump solutions on the (3 + 1)-dimensional generalized Kadomtsev-Petviashvili-Boussinesq equation,” Int. J. Nonlinear Sci. Numer. Stimul., vol. 21, pp. 661-665, 2020. doi:10.1515/ijnsns-2018-0373. · Zbl 07446859 · doi:10.1515/ijnsns-2018-0373
[40] W. X. Ma, “Lump and interaction solutions to linear PDEs in (2+1)-dimensions via symbolic computation,” Mod. Phys. Lett. B, vol. 33, p. 1950457, 2019. doi:10.1142/s0217984919504578. · doi:10.1142/s0217984919504578
[41] C. R. Zhang, B. Tian, Q. X. Qu, L. Liu, and H. Y. Tian, “Vector bright solitons and their interactions of the couple Fokas-Lenells system in a birefringent optical fiber,” Z. Angew. Math. Phys., vol. 71, p. 18, 2020. doi:10.1007/s00033-019-1225-9. · Zbl 1508.35164 · doi:10.1007/s00033-019-1225-9
[42] X. X. Dua, B. Tian, Q. X. Qu, Y. Q. Yuan, and X. H. Zhao, “Lie group analysis, solitons, self-adjointness and conservation laws of the modified Zakharov-Kuznetsov equation in an electron-positron-ion magnetoplasma,” Chaos, Solit. Fractals, vol. 134, p. 109709, 2020. doi:10.1016/j.chaos.2020.109709. · Zbl 1483.35177 · doi:10.1016/j.chaos.2020.109709
[43] Y. Q. Chen, Y. H. Tang, J. Manafian, H. Rezazadeh, and M. S. Osman, “Dark wave, rogue wave and perturbation solutions of Ivancevic option pricing model,” Nonlinear Dynam., vol. 105, pp. 2539-2548, 2021. doi:10.1007/s11071-021-06642-6. · doi:10.1007/s11071-021-06642-6
[44] X. Y. Gao, Y. J. Guo, and W. R. Shan, “Hetero-Bäcklund transformation and similarity reduction of an extended (2+1)-dimensional coupled Burgers system in fluid mechanics,” Phys. Lett. A, vol. 384, p. 126788, 2020. doi:10.1016/j.physleta.2020.126788. · Zbl 1448.37084 · doi:10.1016/j.physleta.2020.126788
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.