×

Delay-dependent robust stability analysis of uncertain fractional-order neutral systems with distributed delays and nonlinear perturbations subject to input saturation. (English) Zbl 07677986

Summary: In this article, we address the delay-dependent robust stability of uncertain fractional order neutral-type (FONT) systems with distributed delays, nonlinear perturbations, and input saturation. With the aid of the Lyapunov-Krasovskii functional, criteria on asymptotic robust stability of FONT, expressed in terms of linear matrix inequalities, are constructed to compute the state-feedback controller gains. The controller gains are determined subject to maximizing the domain of attraction via the cone complementarity linearization algorithm. The theoretical results are validated using numerical simulations.

MSC:

93-XX Systems theory; control
34-XX Ordinary differential equations
Full Text: DOI

References:

[1] Q. Wu, Q. Song, B. Hu, Z. Zhao, Y. Liu, and F. E. Alsaadi, “Robust stability of uncertain fractional order singular systems with neutral and time-varying delays,” Neurocomputing, vol. 411, no. 11, pp. 145-152, 2020. doi:10.1016/j.neucom.2020.03.015. · doi:10.1016/j.neucom.2020.03.015
[2] S. Arik, “New criteria for stability of neutral-type neural networks with multiple time delays,” IEEE Trans. Neural Network Learn. Syst., vol. 31, no. 5, pp. 1504-1513, 2019. doi:10.1109/TNNLS.2019.2920672. · doi:10.1109/TNNLS.2019.2920672
[3] T. Wang, T. Li, G. Zhang, and S. Fei, “Further triple integral approach to mixed-delay-dependent stability of time-delay neutral systems,” ISA (Instrum. Soc. Am.) Trans., vol. 70, pp. 116-124, 2017. doi:10.1016/j.isatra.2017.05.010. · doi:10.1016/j.isatra.2017.05.010
[4] J. Grzybowski, E. Macau, and T. Yoneyama, “The Lyapunov-Krasovskii theorem and a sufficient criterion for local stability of isochronal synchronization in networks of delay-coupled oscillators,” Phys. Nonlinear Phenom., vol. 346, pp. 28-36, 2017. doi:10.1016/j.physd.2017.01.005. · Zbl 1415.34097 · doi:10.1016/j.physd.2017.01.005
[5] A. Elahi and A. Alfi, “Stochastic H∞ finite-time control of networked cascade control systems under limited channels, network delays and packet dropouts,” ISA (Instrum. Soc. Am.) Trans., vol. 97, pp. 352-364, 2020. doi:10.1016/j.isatra.2019.07.020. · doi:10.1016/j.isatra.2019.07.020
[6] K. Cui, J. Lu, C. Li, Z. He, and Y.-M. Chu, “Almost sure synchronization criteria of neutral-type neural networks with Lévy noise and sampled-data loss via event-triggered control,” Neurocomputing, vol. 325, pp. 113-120, 2019. doi:10.1016/j.neucom.2018.10.013. · doi:10.1016/j.neucom.2018.10.013
[7] Q.-L. Han, “Stability analysis for a partial element equivalent circuit (PEEC) model of neutral type,” Int. J. Circ. Theor. Appl., vol. 33, no. 4, pp. 321-332, 2005. doi:10.1002/cta.323. · Zbl 1140.93452 · doi:10.1002/cta.323
[8] M. Barbarossa, K. Hadeler, and C. Kuttler, “State-dependent neutral delay equations from population dynamics,” J. Math. Biol., vol. 69, no. 4, pp. 1027-1056, 2014. doi:10.1007/s00285-014-0821-8. · Zbl 1308.34106 · doi:10.1007/s00285-014-0821-8
[9] F. Du and J.-G. Lu, “Finite-time stability of neutral fractional order time delay systems with Lipschitz nonlinearities,” Appl. Math. Comput., vol. 375, p. 125079, 2020. doi:10.1016/j.amc.2020.125079. · doi:10.1016/j.amc.2020.125079
[10] W. Chen, S. Xu, Y. Li, and Z. Zhang, “Stability analysis of neutral systems with mixed interval time-varying delays and nonlinear disturbances,” J. Franklin Inst., vol. 357, no. 6, pp. 3721-3740, 2020. doi:10.1016/j.jfranklin.2020.02.038. · Zbl 1437.93099 · doi:10.1016/j.jfranklin.2020.02.038
[11] Y. He, M. Wu, J.-H. She, and G.-P. Liu, “Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays,” Syst. Contr. Lett., vol. 51, no. 1, pp. 57-65, 2004. doi:10.1016/s0167-6911(03)00207-x. · Zbl 1157.93467 · doi:10.1016/s0167-6911(03)00207-x
[12] F. Zheng and P. M. Frank, “Robust control of uncertain distributed delay systems with application to the stabilization of combustion in rocket motor chambers,” Automatica, vol. 38, no. 3, pp. 487-497, 2002. doi:10.1016/s0005-1098(01)00232-1. · Zbl 0995.93065 · doi:10.1016/s0005-1098(01)00232-1
[13] E. Kaslik and M. Neamţu, “Dynamics of a tourism sustainability model with distributed delay,” Chaos, Solit. Fractals, vol. 133, p. 109610, 2020. doi:10.1016/j.chaos.2020.109610. · Zbl 1483.76010 · doi:10.1016/j.chaos.2020.109610
[14] B. Niu and Y. Guo, “Bifurcation analysis on the globally coupled Kuramoto oscillators with distributed time delays,” Phys. Nonlinear Phenom., vol. 266, pp. 23-33, 2014. doi:10.1016/j.physd.2013.10.003. · Zbl 1292.34070 · doi:10.1016/j.physd.2013.10.003
[15] M. Sardar, S. Biswas, and S. Khajanchi, “The impact of distributed time delay in a tumor-immune interaction system,” Chaos, Solit. Fractals, vol. 142, p. 110483, 2021. doi:10.1016/j.chaos.2020.110483. · Zbl 1496.92021 · doi:10.1016/j.chaos.2020.110483
[16] R. Roopnarain and S. R. Choudhury, “Amplitude death, oscillation death, and periodic regimes in dynamically coupled Landau-Stuart oscillators with and without distributed delay,” Math. Comput. Simulat., vol. 187, pp. 30-50, 2021. doi:10.1016/j.matcom.2021.02.006. · Zbl 1540.34079 · doi:10.1016/j.matcom.2021.02.006
[17] Y. Chen, W. Qian, and S. Fei, “Improved robust stability conditions for uncertain neutral systems with discrete and distributed delays,” J. Franklin Inst., vol. 352, no. 7, pp. 2634-2645, 2015. doi:10.1016/j.jfranklin.2015.03.040. · Zbl 1395.93460 · doi:10.1016/j.jfranklin.2015.03.040
[18] H. Zhang, R. Ye, S. Liu, J. Cao, A. Alsaedi, and X. Li, “LMI-based approach to stability analysis for fractional-order neural networks with discrete and distributed delays,” Int. J. Syst. Sci., vol. 49, no. 3, pp. 537-545, 2018. doi:10.1080/00207721.2017.1412534. · Zbl 1385.93067 · doi:10.1080/00207721.2017.1412534
[19] P.-L. Liu, “Improved delay-dependent stability of neutral type neural networks with distributed delays,” ISA (Instrum. Soc. Am.) Trans., vol. 52, no. 6, pp. 717-724, 2013. doi:10.1016/j.isatra.2013.06.012. · doi:10.1016/j.isatra.2013.06.012
[20] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204, Amsterdam, Elsevier, 2006. · Zbl 1092.45003
[21] D. Baleanu, S. S. Sajjadi, A. Jajarmi, and J. H. Asad, “New features of the fractional Euler-Lagrange equations for a physical system within non-singular derivative operator,” Eur. Phys. J. Plus, vol. 134, no. 4, p. 181, 2019. doi:10.1140/epjp/i2019-12561-x. · doi:10.1140/epjp/i2019-12561-x
[22] H.-Y. Yang, Y. Yang, F. Han, M. Zhao, and L. Guo, “Containment control of heterogeneous fractional-order multi-agent systems,” J. Franklin Inst., vol. 356, no. 2, pp. 752-765, 2019. doi:10.1016/j.jfranklin.2017.09.034. · Zbl 1406.93041 · doi:10.1016/j.jfranklin.2017.09.034
[23] B. Xiao, J. Luo, X. Bi, W. Li, and B. Chen, “Fractional discrete Tchebyshev moments and their applications in image encryption and watermarking,” Inf. Sci., vol. 516, pp. 545-559, 2020. doi:10.1016/j.ins.2019.12.044. · Zbl 1460.94068 · doi:10.1016/j.ins.2019.12.044
[24] C. Zou, L. Zhang, X. Hu, Z. Wang, T. Wik, and M. Pecht, “A review of fractional-order techniques applied to lithium-ion batteries, lead-acid batteries, and supercapacitors,” J. Power Sources, vol. 390, pp. 286-296, 2018. doi:10.1016/j.jpowsour.2018.04.033. · doi:10.1016/j.jpowsour.2018.04.033
[25] K. M. Owolabi, “High-dimensional spatial patterns in fractional reaction-diffusion system arising in biology,” Chaos, Solit. Fractals, vol. 134, p. 109723, 2020. doi:10.1016/j.chaos.2020.109723. · Zbl 1483.35117 · doi:10.1016/j.chaos.2020.109723
[26] N. H. Sau, D. T. Hong, B. V. Huyen, Huong, and M. V. Thuan, “Delay-dependent and order-dependent control for fractional-order neural networks with time-varying delay,” Differ. Equ. Dyn. Syst., pp. 1-15, 2021. doi:10.1007/s12591-020-00559-z. · Zbl 1481.93031 · doi:10.1007/s12591-020-00559-z
[27] V. Phat, P. Niamsup, and M. V. Thuan, “A new design method for observer-based control of nonlinear fractional-order systems with time-variable delay,” Eur. J. Contr., vol. 56, pp. 124-131, 2020. doi:10.1016/j.ejcon.2020.02.005. · Zbl 1455.93060 · doi:10.1016/j.ejcon.2020.02.005
[28] S. M. A. Pahnehkolaei, A. Alfi, and J. T. Machado, “Uniform stability of fractional order leaky integrator echo state neural network with multiple time delays,” Inf. Sci., vol. 418, pp. 703-716, 2017. doi:10.1016/j.ins.2017.08.046. · doi:10.1016/j.ins.2017.08.046
[29] N. H. Sau, M. V. Thuan, and N. T. T. Huyen, “Passivity analysis of fractional-order neural networks with time-varying delay based on LMI approach,” Circ. Syst. Signal Process., vol. 39, pp. 5906-5925, 2020. doi:10.1007/s00034-020-01450-6. · Zbl 1517.93047 · doi:10.1007/s00034-020-01450-6
[30] R. Rakkiyappan, G. Velmurugan, and J. Cao, “Finite-time stability analysis of fractional-order complex-valued memristor-based neural networks with time delays,” Nonlinear Dynam., vol. 78, no. 4, pp. 2823-2836, 2014. doi:10.1007/s11071-014-1628-2. · Zbl 1331.34154 · doi:10.1007/s11071-014-1628-2
[31] M. V. Thuan, T. N. Binh, and D. C. Huong, “Finite-time guaranteed cost control of caputo fractional-order neural networks,” Asian J. Contr., vol. 22, no. 2, pp. 696-705, 2020. doi:10.1002/asjc.1927. · Zbl 07872617 · doi:10.1002/asjc.1927
[32] J. Xiao, J. Cao, J. Cheng, S. Zhong, and S. Wen, “Novel methods to finite-time Mittag-Leffler synchronization problem of fractional-order quaternion-valued neural networks,” Inf. Sci., vol. 526, pp. 211-244, 2020. · Zbl 1458.34102
[33] P. Li, L. Chen, R. Wu, J. T. Machado, A. M. Lopes, and L. Yuan, “Robust asymptotic stability of interval fractional-order nonlinear systems with time-delay,” J. Franklin Inst., vol. 355, no. 15, pp. 7749-7763, 2018. doi:10.1016/j.jfranklin.2018.08.017. · Zbl 1398.93281 · doi:10.1016/j.jfranklin.2018.08.017
[34] D. C. Huong and M. V. Thuan, “Mixed H∞ and passive control for fractional nonlinear systems via LMI approach,” Acta Appl. Math., vol. 170, no. 1, pp. 37-52, 2020. doi:10.1007/s10440-020-00323-z. · Zbl 1460.93026 · doi:10.1007/s10440-020-00323-z
[35] M. V. Thuan, N. H. Sau, and N. T. T. Huyen, “Finite-time H∞ control of uncertain fractional-order neural networks,” Comput. Appl. Math., vol. 39, no. 2, pp. 1-19, 2020. doi:10.1007/s40314-020-1069-0. · Zbl 1463.93221 · doi:10.1007/s40314-020-1069-0
[36] K. Liu, J. Wang, Y. Zhou, and D. O’Regan, “Hyers-Ulam stability and existence of solutions for fractional differential equations with Mittag-Leffler kernel,” Chaos, Solit. Fractals, vol. 132, p. 109534, 2020. doi:10.1016/j.chaos.2019.109534. · Zbl 1434.34014 · doi:10.1016/j.chaos.2019.109534
[37] M. V. Thuan, N. H. Sau, and N. T. T. Huyen, “New results on robust finite-time passivity for fractional-order neural networks with uncertainties,” Comput. Appl. Math., vol. 39, no. 59, pp. 1-18, 2020. doi:10.1007/s40314-020-1069-0. · Zbl 1463.93221 · doi:10.1007/s40314-020-1069-0
[38] J. Cheng, H. Zhu, S. Zhong, and G. Li, “Novel delay-dependent robust stability criteria for neutral systems with mixed time-varying delays and nonlinear perturbations,” Appl. Math. Comput., vol. 219, no. 14, pp. 7741-7753, 2013. doi:10.1016/j.amc.2013.01.062. · Zbl 1293.34091 · doi:10.1016/j.amc.2013.01.062
[39] X. Zhang and Y. Chen, “Admissibility and robust stabilization of continuous linear singular fractional order systems with the fractional order α: the 0 < α < 1 case,” ISA (Instrum. Soc. Am.) Trans., vol. 82, pp. 42-50, 2018. doi:10.1016/j.isatra.2017.03.008. · doi:10.1016/j.isatra.2017.03.008
[40] P. Badri and M. Sojoodi, “Robust stabilisation of fractional-order interval systems via dynamic output feedback: an LMI approach,” Int. J. Syst. Sci., vol. 50, no. 9, pp. 1718-1730, 2019. doi:10.1080/00207721.2019.1622817. · Zbl 1483.93510 · doi:10.1080/00207721.2019.1622817
[41] R. Mohsenipour and M. F. Jegarkandi, “Robust stability analysis of fractional-order interval systems with multiple time delays,” Int. J. Robust Nonlinear Control, vol. 29, no. 6, pp. 1823-1839, 2019. doi:10.1002/rnc.4461. · Zbl 1416.93161 · doi:10.1002/rnc.4461
[42] M. V. Thuan, D. C. Huong, and D. T. Hong, “New results on robust finite-time passivity for fractional-order neural networks with uncertainties,” Neural Process. Lett., vol. 50, no. 2, pp. 1065-1078, 2019. doi:10.1007/s11063-018-9902-9. · doi:10.1007/s11063-018-9902-9
[43] M. V. Thuan and D. C. Huong, “Robust guaranteed cost control for time-delay fractional-order neural networks systems,” Optim. Contr. Appl. Methods, vol. 40, no. 4, pp. 613-625, 2019. doi:10.1002/oca.2497. · Zbl 1425.93085 · doi:10.1002/oca.2497
[44] S. M. A. Pahnehkolaei, A. Alfi, and J. T. Machado, “Delay-dependent stability analysis of the quad vector field fractional order quaternion-valued memristive uncertain neutral type leaky integrator echo state neural networks,” Neural Network., vol. 117, pp. 307-327, 2019. doi:10.1016/j.neunet.2019.05.015. · Zbl 1443.93101 · doi:10.1016/j.neunet.2019.05.015
[45] W. Chartbupapan, O. Bagdasar, and K. Mukdasai, “A novel delay-dependent asymptotic stability conditions for differential and Riemann-Liouville fractional differential neutral systems with constant delays and nonlinear perturbation,” Mathematics, vol. 8, no. 1, p. 82, 2020. doi:10.3390/math8010082. · doi:10.3390/math8010082
[46] M. Iqbal, M. Rehan, K.-S. Hong, A. Khaliq, and S. ur Rehman, “Sector-condition-based results for adaptive control and synchronization of chaotic systems under input saturation,” Chaos, Solit. Fractals, vol. 77, pp. 158-169, 2015. doi:10.1016/j.chaos.2015.05.021. · Zbl 1353.34057 · doi:10.1016/j.chaos.2015.05.021
[47] H. Li, C. Li, D. Ouyang, and S. K. Nguang, “Impulsive stabilization of nonlinear time-delay system with input saturation via delay-dependent polytopic approach,” IEEE Trans. Systems, Man Cybernetics: Syst., pp. 1-12, 2020. doi:10.1109/tsmc.2019.2963398. · doi:10.1109/tsmc.2019.2963398
[48] X. Yang, B. Zhou, F. Mazenc, and J. Lam, “Global stabilization of discrete-time linear systems subject to input saturation and time delay,” IEEE Trans. Automatic Control, vol. 66, no. 3, pp. 1345-1352, 2020. · Zbl 1536.93701
[49] E. S. A. Shahri, A. Alfi, and J. T. Machado, “Stabilization of fractional-order systems subject to saturation element using fractional dynamic output feedback sliding mode control,” J. Comput. Nonlinear Dynam., vol. 12, no. 3, p. 031014, 2017. doi:10.1115/1.4035196. · doi:10.1115/1.4035196
[50] E. S. A. Shahri, A. Alfi, and J. T. Machado, “Robust stability and stabilization of uncertain fractional order systems subject to input saturation,” J. Vib. Contr., vol. 24, no. 16, pp. 3676-3683, 2018. doi:10.1177/1077546317708927. · Zbl 1400.93252 · doi:10.1177/1077546317708927
[51] E. S. A. Shahri, A. Alfi, and J. T. Machado, “An extension of estimation of domain of attraction for fractional order linear system subject to saturation control,” Appl. Math. Lett., vol. 47, pp. 26-34, 2015. doi:10.1016/j.aml.2015.02.020. · Zbl 1319.93059 · doi:10.1016/j.aml.2015.02.020
[52] E. S. A. Shahri, A. Alfi, and J. T. Machado, “Lyapunov method for the stability analysis of uncertain fractional-order systems under input saturation,” Appl. Math. Model., vol. 81, pp. 663-672, 2020. doi:10.1016/j.apm.2020.01.013. · Zbl 1481.93103 · doi:10.1016/j.apm.2020.01.013
[53] E. S. A. Shahri, A. Alfi, and J. T. Machado, “Stability analysis of a class of nonlinear fractional-order systems under control input saturation,” Int. J. Robust Nonlinear Control, vol. 28, no. 7, pp. 2887-2905, 2018. doi:10.1002/rnc.4055. · Zbl 1391.93177 · doi:10.1002/rnc.4055
[54] S. Song, J. H. Park, B. Zhang, and X. Song, “Adaptive hybrid fuzzy output feedback control for fractional-order nonlinear systems with time-varying delays and input saturation,” Appl. Math. Comput., vol. 364, p. 124662, 2020. doi:10.1016/j.amc.2019.124662. · Zbl 1433.93059 · doi:10.1016/j.amc.2019.124662
[55] Z. Chen, J. Cheng, J. Tan, and Z. Cao, “Decentralized finite-time control for linear interconnected fractional-order systems with input saturation,” J. Franklin Inst., vol. 357, pp. 6137-6153, 2020. doi:10.1016/j.jfranklin.2020.04.018. · Zbl 1441.93003 · doi:10.1016/j.jfranklin.2020.04.018
[56] Y.-H. Lim, K.-K. Oh, and H.-S. Ahn, “Stability and stabilization of fractional-order linear systems subject to input saturation,” IEEE Trans. Automat. Contr., vol. 58, no. 4, pp. 1062-1067, 2012. · Zbl 1369.93495
[57] D. Valério, J. J. Trujillo, M. Rivero, J. T. Machado, and D. Baleanu, “Fractional calculus: a survey of useful formulas,” Eur. Phys. J. Spec. Top., vol. 222, no. 8, pp. 1827-1846, 2013. doi:10.1140/epjst/e2013-01967-y. · doi:10.1140/epjst/e2013-01967-y
[58] E. S. A. Shahri and S. Balochian, “Analysis of fractional-order linear systems with saturation using Lyapunov second method and convex optimization,” Int. J. Autom. Comput., vol. 12, no. 4, pp. 440-447, 2015. doi:10.1007/s11633-014-0856-8. · doi:10.1007/s11633-014-0856-8
[59] I. R. Petersen, “A stabilization algorithm for a class of uncertain linear systems,” Syst. Contr. Lett., vol. 8, no. 4, pp. 351-357, 1987. doi:10.1016/0167-6911(87)90102-2. · Zbl 0618.93056 · doi:10.1016/0167-6911(87)90102-2
[60] K. Gu, J. Chen, and V. L. Kharitonov, Stability of Time-Delay Systems, Boston, Springer Science & Business Media, 2003. · Zbl 1039.34067
[61] S. Liu, W. Jiang, X. Li, and X.-F. Zhou, “Lyapunov stability analysis of fractional nonlinear systems,” Appl. Math. Lett., vol. 51, pp. 13-19, 2016. doi:10.1016/j.aml.2015.06.018. · Zbl 1356.34061 · doi:10.1016/j.aml.2015.06.018
[62] F. Zhang, The Schur Complement and its Applications, vol. 4, United States of America, Springer Science & Business Media, 2006.
[63] X. Liao, G. Chen, and E. N. Sanchez, “LMI-based approach for asymptotically stability analysis of delayed neural networks,” IEEE Trans. Circuits Syst. I, vol. 49, no. 7, pp. 1033-1039, 2002. doi:10.1109/tcsi.2002.800842. · Zbl 1368.93598 · doi:10.1109/tcsi.2002.800842
[64] A. Elahi and A. Alfi, “Finite-time H∞ stability analysis of uncertain network-based control systems under random packet dropout and varying network delay,” Nonlinear Dynam., vol. 91, pp. 713-731, 2017. doi:10.1007/s11071-017-3905-3. · Zbl 1390.93280 · doi:10.1007/s11071-017-3905-3
[65] K. Diethelm and N. J. Ford, “Analysis of fractional differential equations,” J. Math. Anal. Appl., vol. 265, no. 2, pp. 229-248, 2002. doi:10.1006/jmaa.2000.7194. · Zbl 1014.34003 · doi:10.1006/jmaa.2000.7194
[66] S. Bhalekar and V. Daftardar-Gejji, “A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order,” J. Fractional Calculus Appl., vol. 1, no. 5, pp. 1-9, 2011. · Zbl 1488.65209
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.