×

A colorization-based anisotropic variational model for vector-valued image compression. (English) Zbl 07675892

Summary: Image compression is an important technology in digital image processing. In this paper, a novel colorization-based codec for vector-valued images is proposed. In compression, we first define the concept of “structure image”, which contains rich geometric structure information of the vector-valued image. Then, to extract representative pixels from the original vector-valued image, a “one-iteration method” is proposed. It can tremendously improve compression efficiency. In decompression, starting from colorizing the structure image, an anisotropic variational model is proposed. The existence and uniqueness of minimizers for the proposed variational model are established. Besides, we develop a fast and efficient algorithm for solving the model numerically by employing the scaled form of the alternating direction method of multipliers (ADMM). Numerical experiments on natural color images demonstrate that the proposed method outperforms the state-of-art colorization-based image compression method. Compared with the transform-based approaches, experiments on satellite multispectral images illustrate that the proposed method is superior to the JPEG and JPEG2000 standards.

MSC:

68U10 Computing methodologies for image processing
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
32A70 Functional analysis techniques applied to functions of several complex variables

Software:

BM3D; JPEG2000
Full Text: DOI

References:

[1] N. J. P. J. Amrani Serra-Sagristà Peter Weickert, Diffusion-based inpainting for coding remote-sensing data, IEEE Geosci. Remote Sens. Lett., 14, 1203-1207 (2017) · doi:10.1109/LGRS.2017.2702106
[2] G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing: Partial Differential Equations and The Calculus of Variations, \(2^{nd}\) edition, Springer-Verlag, New York, 2006. · Zbl 1110.35001
[3] M. Bertalmio, Strong-continuation, contrast-invariant inpainting with a third-order optimal PDE, IEEE Trans. Image Process., 15, 1934-1938 (2006) · doi:10.1109/TIP.2006.877067
[4] S. N. E. B. J. Boyd Parikh Chu Peleato Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3, 1-122 (2011) · Zbl 1229.90122 · doi:10.1561/2200000016
[5] V. B. J.-M. Caselles Coll Morel, Geometry and color in natural images, J. Math. Imaging Vision, 16, 89-105 (2002) · Zbl 0994.68167 · doi:10.1023/A:1013943314097
[6] A. T. Chambolle Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vision, 40, 120-145 (2011) · Zbl 1255.68217 · doi:10.1007/s10851-010-0251-1
[7] T. F. J. Chan Shen, Variational image inpainting, Commun. Pure Appl. Math., 58, 579-619 (2005) · Zbl 1067.68168 · doi:10.1002/cpa.20075
[8] G. Chen, Image segmentation algorithm combined with regularized PM de-noising model and improved watershed algorithm, J. Med. Imaging Health Inf., 10, 515-521 (2020) · doi:10.1166/jmihi.2020.2899
[9] D. T. C. Cremers Kohlberger Schnörr, Shape statistics in kernel space for variational image segmentation, Pattern Recognit., 36, 1929-1943 (2003) · Zbl 1035.68125 · doi:10.1016/S0031-3203(03)00056-6
[10] B. Dacorogna, Direct Methods in The Calculus of Variations, Springer-Verlag, New York, 2008. · Zbl 1140.49001
[11] A. V. K. Danielyan Katkovnik Egiazarian, BM3D frames and variational image deblurring, IEEE Trans. Image Process., 21, 1715-1728 (2011) · Zbl 1373.94096 · doi:10.1109/TIP.2011.2176954
[12] L.-J. R. X.-C. Deng Glowinski Tai, A new operator splitting method for the {E}uler elastica model for image smoothing, SIAM J. Imag. Sci., 12, 1190-1230 (2019) · Zbl 1538.94005 · doi:10.1137/18M1226361
[13] S. Di Zenzo, A note on the gradient of a multi-image, Computer Vision, Graphics, and Image Processing, 33, 116-125 (1986) · Zbl 0625.68065 · doi:10.1016/0734-189X(86)90223-9
[14] O. K. Drblíková Mikula, Convergence analysis of finite volume scheme for nonlinear tensor anisotropic diffusion in image processing, SIAM J. Numer. Anal., 46, 37-60 (2008) · Zbl 1233.65063 · doi:10.1137/070685038
[15] J. A. B. C. Duran Buades Coll Sbert, A nonlocal variational model for pansharpening image fusion, SIAM J. Imag. Sci., 7, 761-796 (2014) · Zbl 1298.68286 · doi:10.1137/130928625
[16] J. D. P. Eckstein Bertsekas, On the Douglas-rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Program., 55, 293-318 (1992) · Zbl 0765.90073 · doi:10.1007/BF01581204
[17] J. M. C. Eckstein Ferris, Operator-splitting methods for monotone affine variational inequalities, with a parallel application to optimal control, Informs J. Comput., 10, 218-235 (1998) · Zbl 1034.90531 · doi:10.1287/ijoc.10.2.218
[18] M. J. S. R. Ehrhardt Arridge, Vector-valued image processing by parallel level sets, IEEE Trans. Image Process., 23, 9-18 (2014) · Zbl 1374.94094 · doi:10.1109/TIP.2013.2277775
[19] R. Franzen, Kodak lossless true color image suite, 1999. Available from: http://r0k.us/graphics/kodak/.
[20] I. Galić, J. Weickert, M. Welk, A. Bruhn, A. Belyaev and H.-P. Seidel, Towards PDE-based image compression, International Workshop on Variational, Geometric, and Level Set Methods in Computer Vision, Springer, Berlin, Heidelberg, 2005, 37-48. · Zbl 1159.68589
[21] I. J. M. A. A. H.-P. Galić Weickert Welk Bruhn Belyaev Seidel, Image compression with anisotropic diffusion, J. Math. Imaging Vision, 31, 255-269 (2008) · Zbl 1448.94012 · doi:10.1007/s10851-008-0087-0
[22] T. S. Goldstein Osher, The split bregman method for \(L_1\)-regularized problems, SIAM J. Imag. Sci., 2, 323-343 (2009) · Zbl 1177.65088 · doi:10.1137/080725891
[23] H. Grossauer, A combined PDE and texture synthesis approach to inpainting, European Conference on Computer Vision, Springer, Berlin, Heidelberg, 2004,214-224. · Zbl 1098.68771
[24] R. M. K. I. H. Haralick Shanmugam Dinstein, Textural features for image classification, IEEE Trans. Syst. Man Cybern., 6, 610-621 (1973) · doi:10.1109/TSMC.1973.4309314
[25] M. Kreuter, Sobolev Spaces of Vector-Valued Functions, Master thesis, Ulm University, 2015.
[26] E. Kreyszig, Introduction to Differential Geometry and Riemannian Geometry (1968) · Zbl 0175.48101
[27] S. S.-W. P. M. G. Lee Park Oh Kang, Colorization-based compression using optimization, IEEE Trans. Image Process., 22, 2627-2636 (2013) · doi:10.1109/TIP.2013.2253486
[28] A. S. G. Lewis Knowles, Image compression using the 2-D wavelet transform, IEEE Trans. Image Process., 1, 244-250 (1992) · doi:10.1109/83.136601
[29] J.-M. Morel and S. Solimini, Variational Methods in Image Segmentation: With Seven Image Processing Experiments, Birkhäuser, Boston, 1995.
[30] K. T. Mullen, The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings, J. Physiol., 359, 381-400 (1985) · doi:10.1113/jphysiol.1985.sp015591
[31] H.-H. Nagel, Constraints for the estimation of displacement vector fields from image sequences, IJCAI, 1983,945-951.
[32] S. Ono, T. Miyata and Y. Sakai, Colorization-based coding by focusing on characteristics of colorization bases, 28th Picture Coding Symposium, Nagoya, Japan, 2010,230-233.
[33] W. B. Pennebaker and J. L. Mitchell, JPEG: Still Image Data Compression Standard, Springer Science & Business Media, 1992.
[34] P. J. Perona Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., 12, 629-639 (1990) · doi:10.1109/34.56205
[35] P. L. J. Peter Kaufhold Weickert, Turning diffusion-based image colorization into efficient color compression, IEEE Trans. Image Process., 26, 860-869 (2017) · Zbl 1409.94488 · doi:10.1109/TIP.2016.2627800
[36] P. Petersen, Riemannian Geometry, \(2^{nd}\) edition, Springer-Verlag, New York 2006. · Zbl 1220.53002
[37] M. Rabbani, JPEG2000: Image compression fundamentals, standards and practice, J. Electron. Imaging, 11, 286 (2002) · doi:10.1117/1.1469618
[38] M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations, \(2^{nd}\) edition, Springer-Verlag, New York, 2004. · Zbl 1072.35001
[39] L. I. S. E. Rudin Osher Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60, 259-268 (1992) · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
[40] G. D. L. Sapiro Ringach, Anisotropic diffusion of multivalued images with applications to color filtering, IEEE Trans. Image Process., 5, 1582-1586 (1996) · doi:10.1109/83.541429
[41] C. P. M. F. J. A. Schmaltz Peter Mainberger Ebel Weickert Bruhn, Understanding, optimising, and extending data compression with anisotropic diffusion, Int. J. Comput. Vision, 108, 222-240 (2014) · doi:10.1007/s11263-014-0702-z
[42] K. Z. Shi Guo, On the existence of weak solutions for a curvature driven elliptic system applied to image inpainting, Appl. Math. Lett., 99, 106003 (2020) · Zbl 1431.35041 · doi:10.1016/j.aml.2019.106003
[43] K. D. Z. B. Shi Zhang Guo Wu, A linear reaction-diffusion system with interior degeneration for color image compression, SIAM J. Imag. Sci., 11, 442-472 (2018) · Zbl 1401.94022 · doi:10.1137/17M1137991
[44] S. S. Swami and A. O. Mulani, An efficient FPGA implementation of discrete wavelet transform for image compression, 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, India, 2017, 3385-3389.
[45] X.-C. J. G. J. Tai Hahn Chung, A fast algorithm for Euler’s elastica model using augmented Lagrangian method, SIAM J. Imag. Sci., 4, 313-344 (2011) · Zbl 1215.68262 · doi:10.1137/100803730
[46] C. Y. Tian Chen, Image segmentation and denoising algorithm based on partial differential equations, IEEE Sens. J., 20, 11935-11942 (2020) · doi:10.1109/JSEN.2019.2959704
[47] A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems, Winston, New York, 1997.
[48] K. K. T. T. Uruma Konishi Takahashi Furukawa, Fast colorization based image coding algorithm using multiple resolution images, EURASIP J. Image Video Process, 1, 1-15 (2016) · doi:10.1186/s13640-016-0107-8
[49] Y. W. J. Wang Yin Zeng, Global convergence of ADMM in nonconvex nonsmooth optimization, J. Sci. Comput., 78, 29-63 (2019) · Zbl 1462.65072 · doi:10.1007/s10915-018-0757-z
[50] Z. A. C. H. R. E. P. Wang Bovik Sheikh Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13, 600-612 (2004) · doi:10.1109/TIP.2003.819861
[51] J. Weickert, Theoretical foundations of anisotropic diffusion in image processing, in Theoretical Foundations of Computer Vision, Springer, Vienna, 1996,221-236.
[52] J. Weickert, Anisotropic Diffusion in Image Processing, Teubner Stuttgart, 1998. · Zbl 0886.68131
[53] J. H. Weickert Scharr, A scheme for coherence-enhancing diffusion filtering with optimized rotation invariance, J. Visual Commun. Image Represent., 13, 103-118 (2002) · doi:10.1006/jvci.2001.0495
[54] J. Weickert, M. Welk and M. Wickert, \(L^2\)-stable nonstandard finite differences for anisotropic diffusion, International Conference on Scale Space and Variational Methods in Computer Vision, Springer, Berlin, Heidelberg, 2013,380-391.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.