×

Large cardinals as principles of structural reflection. (English) Zbl 07665537

Summary: After discussing the limitations inherent to all set-theoretic reflection principles akin to those studied by A. Lévy et. al. in the 1960s, we introduce new principles of reflection based on the general notion of Structural Reflection and argue that they are in strong agreement with the conception of reflection implicit in Cantor’s original idea of the unknowability of the Absolute, which was subsequently developed in the works of Ackermann, Lévy, Gödel, Reinhardt, and others. We then present a comprehensive survey of results showing that different forms of the new principle of Structural Reflection are equivalent to well-known large cardinal axioms covering all regions of the large-cardinal hierarchy, thereby justifying the naturalness of the latter.

MSC:

03-02 Research exposition (monographs, survey articles) pertaining to mathematical logic and foundations
03E55 Large cardinals
03E65 Other set-theoretic hypotheses and axioms
03Exx Set theory
00A30 Philosophy of mathematics
03A05 Philosophical and critical aspects of logic and foundations

References:

[1] Ackermann, W., Zur Axiomatik der Mengenlehre. Mathematische Annalen, vol. 131 (1956), pp. 336-345. · Zbl 0070.04801
[2] Bagaria, J., \({C}^{(n)}\) -cardinals. Archive for Mathematical Logic, vol. 51 (2012), pp. 213-240. · Zbl 1250.03108
[3] Bagaria, J., Casacuberta, C., Mathias, A. R. D., and Rosický, J., Definable orthogonality classes in accessible categories are small. Journal of the European Mathematical Society, vol. 17 (2015), no. 3, pp. 549-589. · Zbl 1373.03108
[4] Bagaria, J., Gitman, V., and Schindler, R. D., Generic Vopěnka’s principle, remarkable cardinals, and the weak proper forcing axiom. Archive for Mathematical Logic, vol. 56 (2017), nos. 1-2, pp. 1-20. · Zbl 1417.03260
[5] Bagaria, J., Koellner, P., and Woodin, H., Large cardinals beyond choice, this Journal, vol. 25 (2019), no. 3, pp. 283-318. · Zbl 1475.03098
[6] Bagaria, J. and Lücke, P.. Patterns of structural reflection in the large-cardinal hierarchy, 2022, submitted.
[7] Bagaria, J. and Lücke, P., Huge reflection. Annals of Pure and Applied Logic, vol. 174 (2023), no. 1, p. 103171. · Zbl 1511.03012
[8] Bagaria, J. and Väänänen, J., On the symbiosis between model-theoretic and set-theoretic properties of large cardinals. The Journal of Symbolic Logic, vol. 81 (2016), no. 2, pp. 584-604. · Zbl 1436.03265
[9] Bagaria, J. and Wilson, T., The Weak Vopěnka Principle for definable classes of structures. The Journal of Symbolic Logic, vol. 88 (2023), pp. 145-168. · Zbl 07657278
[10] Cai, J. and Tsaprounis, K., On strengthenings of superstrong cardinals. New York Journal of Mathematics, vol. 25 (2019), pp. 174-194. · Zbl 1537.03067
[11] Cantor, G., Grundlagen einer allgemeinen Mannigfaltigkeitslehre. Ein Mathematisch-Philosophischer Versuch in der Lehre des Unendlichen, B. G. Teubner, Leipzig, 1883. · JFM 15.0453.01
[12] Feferman, S., Review of: Azriel Lévy, “On the principles of reflection in axiomatic set theory”, Logic, Methodology and Philosophy of Science (Proceedings of the 1960 International Congress) (E. Nagel, P. Suppes, and A. Tarski, editors), Stanford University Press, Stanford, 1962, pp. 87-93. · Zbl 0207.30005
[13] Jané, I., Idealist and realist elements in Cantor’s approach to set theory. Philosophia Mathematica, vol. 18 (2010), no. 2, pp. 193-226. · Zbl 1244.03019
[14] Jech, T., Set Theory, The Third Millenium Edition, Revised and Expanded, Springer Monographs in Mathematics, Springer, Berlin, Heidelberg, 2002.
[15] Kanamori, A., The Higher Infinite, second ed., Springer, Berlin, Heidelberg, 2003. · Zbl 1022.03033
[16] Koellner, P., On reflection principles. Annals of Pure and Applied Logic, vol. 157 (2009), nos. 2-3, pp. 206-219. · Zbl 1162.03030
[17] Koepke, P., An introduction to extenders and core models for extender sequences, Logic Colloquium’87 (H.-D. Ebbinghaus et al., editors), Elsevier, North Holland, Amsterdam, 1989. · Zbl 0683.03032
[18] Kunen, K., Elementary embeddings and infinitary combinatorics. The Journal of Symbolic Logic, vol. 36 (1971), pp. 407-413. · Zbl 0272.02087
[19] Lévy, A., On Ackermann’s set theory. The Journal of Symbolic Logic, vol. 24 (1959), pp. 154-166. · Zbl 0178.31601
[20] Lévy, A., Axiom schemata of strong infinity in axiomatic set theory. Pacific Journal of Mathematics, vol. 10 (1960), pp. 223-238. · Zbl 0201.32602
[21] Lévy, A., Principles of reflection in axiomatic set theory. Fundamenta Mathematicae, vol. 49 (1960/1961), pp. 1-10. · Zbl 0100.01104
[22] Lévy, A., On the principles of reflection in axiomatic set theory, Logic, Methodology and Philosophy of Science (Proceedings of the 1960 International Congress), Stanford University Press, Stanford, 1962, pp. 87-93. · Zbl 0207.30005
[23] Lücke, P., Structural reflection, shrewd cardinals and the size of the continuum. Journal of Mathematical Logic, vol. 22 (2022), no. 2, p. 2250007. · Zbl 1510.03021
[24] Magidor, M., On the role of supercompact and extendible cardinals in logic. Israel Journal of Mathematics, vol. 10 (1971), no. 2, pp. 147-157. · Zbl 0263.02034
[25] Magidor, M. and Väänänen, J., On Löwenheim-Skolem-Tarski numbers for extensions of first-order logic. Journal of Mathematical Logic, vol. 11 (2011), no. 1, pp. 87-113. · Zbl 1252.03094
[26] Mccallum, R., A consistency proof for some restrictions of Tait’s reflection principles. Mathematical Logic Quarterly, vol. 50 (2013), nos. 1-2, pp. 112-118. · Zbl 1270.03102
[27] Mitchell, W. J., Beginning inner model theory, Handbook of Set Theory (M. Foreman and A. Kanamori, editors), Springer, Dordrecht, 2010, pp. 1449-1495. · Zbl 1198.03066
[28] Rathjen, M., Recent advances in ordinal analysis: \({\varPi}_2^1\) -CA and related systems, this Journal, vol. 1 (1995), no. 4, pp. 468-485. · Zbl 0855.03035
[29] Reinhardt, W., Remarks on reflection principles, large cardinals, and elementary embeddings, Axiomatic Set Theory. Proceedings of Symposia in Pure Mathematics, XIII, Part II, vol. 10, American Mathematical Society, Providence, 1974, pp. 189-205. · Zbl 0325.02048
[30] Reinhardt, W. N., Ackermann’s set theory equals ZF. Annals of Mathematical Logic, vol. 2 (1970), no. 2, pp. 189-249. · Zbl 0211.30901
[31] Schindler, R.-D., Proper forcing and remarkable cardinals. The Journal of Symbolic Logic, vol. 6 (2000), no. 2, pp. 176-184. · Zbl 0960.03044
[32] Schindler, R.-D., The core model for almost linear iterations. Annals of Pure and Applied Logic, vol. 116 (2002), no. 1, pp. 205-272. · Zbl 1017.03029
[33] Schindler, R.-D., Remarkable cardinals, Infinity, Computability, and Metamathematics: Festschrift in Honour of the 60th Birthdays of Peter Koepke and Philip Welch, Tributes (S. Geschke, B. Loewe and P. Schlicht, editors), College Publications, London, 2014, pp. 299-308. · Zbl 1358.03081
[34] Stavi, J. and Väänänen, J., Reflection principles for the continuum, Logic and Algebra, Contemporary Mathematics, vol. 302 (Y. Zhang, editor), American Mathematical Society, Providence, 2002, pp. 59-84. · Zbl 1013.03059
[35] Tait, W. W., Gödel’s unpublished papers on foundations of mathematics. Philosophia Mathematica, vol. 9 (2001), pp. 87-126. · Zbl 0990.03001
[36] Wang, H., A Logical Journey: From Gödel to Philosophy, MIT Press, Cambridge, 1996. · Zbl 0978.03500
[37] Wilson, T., Weakly remarkable cardinals, Erdös cardinals, and the generic Vopěnka principle. The Journal of Symbolic Logic, vol. 84 (2019), no. 4, pp. 1711-1721. · Zbl 1476.03074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.