×

Study on the integro-differential equations on \(C^1(\mathbb{R}_+)\). (English) Zbl 07658818

Summary: This paper provides sufficient conditions for the existence of a solution for some classes of integro-differential equations in unbounded domains. The investigation successfully applies the Darbo fixed point theorem by considering an appropriate measure of noncompactness on \(C^1(\mathbb{R}_+)\). Moreover, the paper contains some examples to illustrate the results in each type of the considered integro-differential equations. Further, some significant examples are solved by a numerical approach named the artificial small parameter method.

MSC:

47N20 Applications of operator theory to differential and integral equations
45J05 Integro-ordinary differential equations
47H08 Measures of noncompactness and condensing mappings, \(K\)-set contractions, etc.
47H10 Fixed-point theorems
Full Text: DOI

References:

[1] Aghajani, A.; Jalilian, Y., Existence and global attractivity of solutions of a nonlinear functional integral equation, Commun Nonlinear Sci Numer Simul, 15, 3306-3312 (2010) · Zbl 1222.45004 · doi:10.1016/j.cnsns.2009.12.035
[2] Aghajani, A.; Banaś, J.; Sabzali, N., Some generalizations of Darbo fixed point theorem and applications, Bull Belg Math Soc Simon Stevin, 20, 345-358 (2013) · Zbl 1290.47053 · doi:10.36045/bbms/1369316549
[3] Aghajani, A.; O’Regan, D.; Shole Haghighi, A., Measure of noncompactness on \(L^p({\mathbb{R} }^N)\) and applications, CUBO, 17, 1, 85-97 (2015) · Zbl 1327.47043 · doi:10.4067/S0719-06462015000100007
[4] Arab, R.; Allahyari, R.; Shole Haghighi, A., Construction of measures of noncompactness of \(C^k(\Omega )\) and \(C_0^k\) and their application to functional integral-differential equations, Bull Iran Math Soc, 43, 1, 53-67 (2017) · Zbl 1373.47048
[5] Banaś, J.; Goebel, K., Measures of noncompactness in Banach spaces. Lecture notes in pure and applied mathematics (1980), New York: Marcel Dekker, New York · Zbl 0441.47056
[6] Bungartz, HJ; Zimmer, S.; Buchholz, M.; Pflüger, D., Global illumination in computer graphics, Modeling and simulation. Springer undergraduate texts in mathematics and technology (2014), Berlin: Springer, Berlin · Zbl 1281.00019
[7] Darbo, G., Punti uniti in trasformazioni a codominio non compatto, Rend Sem Mat Univ Padova, 24, 84-92 (1955) · Zbl 0064.35704
[8] Deep, A.; Deepmala; Hazarika, B., An existence result for Hadamard type two dimensional fractional functional integral equations via measure of noncompactness, Chaos Solitons Fractals, 147, 110874 (2021) · Zbl 1486.45006 · doi:10.1016/j.chaos.2021.110874
[9] El-Sayed, AMA; Ebead, HR, On the solvability of a self-reference functional and quadratic functional integral equations, Filomat, 34, 25 (2020) · Zbl 1499.32020 · doi:10.2298/FIL2001129E
[10] Hazarika, B.; Srivastava, HM; Arab, R.; Rabbani, M., Existence of solution for an infinite system of nonlinear integral equations via measure of noncompactness and homotopy perturbation method to solve it, J Comput Appl Math, 343, 341-352 (2018) · Zbl 1390.34033 · doi:10.1016/j.cam.2018.05.011
[11] Hazarika, B.; Srivastava, HM; Arab, R.; Rabbani, M., Application of simulation function and measure of noncompactness for solvability of nonlinear functional integral equations and introduction to an iteration algorithm to find solution, Appl Math Comput, 360, 131-146 (2019) · Zbl 1428.45003
[12] Kijima, M., Stochastic processes with applications to finance (2016), Boca Raton: CRC Press, Boca Raton · Zbl 1029.91034 · doi:10.1201/b14785
[13] Koyunbakan, H.; Shah, K.; Abdeljawad, T., Well-posedness of inverse Sturm-Liouville problem with fractional derivative, Qual Theory Dyn Syst, 22, 23 (2023) · Zbl 1518.34020 · doi:10.1007/s12346-022-00727-2
[14] Kuratowski, K., Sur les espaces complets, Fundam Math, 15, 301-309 (1930) · JFM 56.1124.04 · doi:10.4064/fm-15-1-301-309
[15] Liao, SJ, An approximate solution technique not depending on small parameters: a special example, Int J Non-Linear Mech, 30, 3, 371-380 (1995) · Zbl 0837.76073 · doi:10.1016/0020-7462(94)00054-E
[16] Liao, S., Beyond perturbation: introduction to the homotopy analysis method (2003), New York: Chapman and Hall/CRC, New York · Zbl 1051.76001 · doi:10.1201/9780203491164
[17] Mishra, LN; Pathak, VK; Baleanu, D., Approximation of solutions for nonlinear functional integral equations, AIMS Math, 7, 9, 17486-17506 (2022) · doi:10.3934/math.2022964
[18] Muskhelishvili, N., Singular integral equations: boundary problems of function theory and their application to mathematical physics (2011), New York: Dover Publications, New York
[19] Rabbani, M.; Deep, A., Deepmala, On some generalized non-linear functional integral equations of two variables via measures of noncompactness and numerical method to solve it, Math Sci, 15, 25 (2021) · Zbl 1486.45008 · doi:10.1007/s40096-020-00367-0
[20] Rabbani, M.; Arab, R.; Hazarika, B., Solvability of nonlinear quadratic integral equation by using simulation type condensing operator and measure of noncompactness, Appl Math Comput, 349, 102-117 (2019) · Zbl 1428.45004
[21] Rabbani, M.; Das, A.; Hazarika, B.; Arab, R., Existence of solution for two dimensional nonlinear fractional integral equation by measure of noncompactness and iterative algorithm to solve it, J Comput Appl Math, 370, 112654 (2020) · Zbl 1443.45007 · doi:10.1016/j.cam.2019.112654
[22] Razani, A.; Figueiredo, GM, Existence of infinitely many solutions for an anisotropic equation using genus theory, Math Methods Appl Sci, 20, 20 (2022)
[23] Rubinstein, A., Stability of the numerical procedure for solution of singular integral equations on semi-infinite interval. application to fracture mechanics, Comput Struct, 44, 1-2, 71-74 (1992) · Zbl 0825.73994 · doi:10.1016/0045-7949(92)90224-N
[24] Saiedinezhad, S., On a measure of noncompactness in the Holder space \(C^{k,\gamma }(\Omega )\) and its application, J Comput Appl Math, 346, 566-571 (2019) · Zbl 1452.47002 · doi:10.1016/j.cam.2018.07.030
[25] Shabbir, S.; Shah, K.; Abdeljawad, T., Stability analysis for a class of implicit fractional differential equations involving Atangana-Baleanu fractional derivative, Adv Differ Equ, 20, 20 (2021) · Zbl 1494.34013
[26] Shah, K.; Abdalla, B.; Abdeljawad, T.; Gul, R., Analysis of multipoint impulsive problem of fractional-order differential equations, Bound Value Probl, 20, 20 (2023) · Zbl 1527.34023
[27] Siraj Ahmad, K.; Shah, K.; Abdeljawad, T.; Abdalla, B., On the approximation of fractal-fractional differential equations using numerical inverse Laplace transform methods, Comput Model Eng Sci, 20, 20 (2023)
[28] Tamimi, H.; Saiedinezhad, S.; Ghaemi, MB, The measure of noncompactness in a generalized coupled fixed point theorem and its application to an integro-differential system, J Comput Appl Math, 413, 114380 (2022) · Zbl 07542695 · doi:10.1016/j.cam.2022.114380
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.