×

A path integral Monte Carlo (PIMC) method based on Feynman-Kac formula for electrical impedance tomography. (English) Zbl 07652777

Summary: A path integral Monte Carlo method (PIMC) based on a Feynman-Kac formula for the Laplace equation with mixed boundary conditions is proposed to solve the forward problem of the electrical impedance tomography (EIT). The forward problem is an important part of iterative algorithms of the inverse EIT problem, and the proposed PIMC provides a local solution to find the potentials and currents on individual electrodes. Improved techniques are proposed to compute with better accuracy both the local time of reflecting Brownian motions (RBMs) and the Feynman-Kac formula for mixed boundary problems of the Laplace equation. Accurate voltage-to-current maps on the electrodes of a model 3-D EIT problem with eight electrodes are obtained by solving a mixed boundary problem with the proposed PIMC method.

MSC:

35Rxx Miscellaneous topics in partial differential equations
60Jxx Markov processes
35Jxx Elliptic equations and elliptic systems
Full Text: DOI

References:

[1] Alessandrini, G., Stable determination of conductivity by boundary measurements, Appl. Anal., 27, 1-3, 153-172 (1988) · Zbl 0616.35082
[2] Borcea, L., Electrical impedance tomography, Inverse Probl., 18, 6, R99 (2002) · Zbl 1031.35147
[3] A. Borsic, B.M. Graham, A. Adler, W.R.B. Lionheart, Total variation regularization in electrical impedance tomography, 2007.
[4] Calderón, A. P., On an inverse boundary value problem, Comput. Appl. Math., 25, 2-3, 133-138 (2006) · Zbl 1182.35230
[5] Cheney Margaret, M.; Isaacson, D.; Newell, Jonathan C., Electrical impedance tomography, SIAM Rev., 41, 1, 85-101 (1999) · Zbl 0927.35130
[6] Chung Green, K. L., Brown, and Probability and Brownian Motion on the Line (2002), World Scientific Pub Co Inc · Zbl 1014.60001
[7] Douglas, J. F., Integral equation approach to condensed matter relaxation, J. Phys. Condens. Matter, 11, 10A, A329 (1999)
[8] Given, J. A.; Hwang, C.; Mascagni, M., First- and last-passage Monte Carlo algorithms for the charge density distribution on a conducting surface, Phys. Rev. E, 66, Article 056704 pp. (2002)
[9] Hsiao, Y.; Daniel, L., CAPLET: a highly parallelized field solver for capacitance extraction using instantiable basis functions, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 35, 3, 458-470 (2015)
[10] Hsu, (Elton) P., Reflecting Brownian motion, boundary local time and the Neumann problem, Diss. Abstr. Int., B. Sci. Eng, 45, 6 (1984)
[11] Kaipio, J. P.; Kolehmainen, V.; Somersalo, E.; Vauhkonen, M., Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography, Inverse Probl., 16, 5, 1487 (2000) · Zbl 1044.78513
[12] Karatzas, I.; Shreve, S. E., Brownian Motion and Stochastic Calculus (1988), Springer-Verlag New York Inc. · Zbl 0638.60065
[13] Kohn, R.; Vogelius, M., Determining conductivity by boundary measurements, Commun. Pure Appl. Math., 37, 113-123 (1984)
[14] Lévy, P., Processus Stochastiques et Mouvement Brownien (1948), Gauthier-Villars: Gauthier-Villars Paris · Zbl 0034.22603
[15] Lin, H. M.; Tang, H. Z.; Cai, W., Accuracy and efficiency in computing electrostatic potential for an ion channel model in layered dielectric/electrolyte media, J. Comput. Phys., 259, 488-512 (2014) · Zbl 1349.76922
[16] Lions, P. L.; Sznitman, A. S., Stochastic differential equations with reflecting boundary conditions, Commun. Pure Appl. Math., 37, 4, 511-537 (1984) · Zbl 0598.60060
[17] Maire, S.; Tanré, E., Monte Carlo approximations of the Neumann problem, Monte Carlo Methods Appl., 19, 3, 201-236 (2013 Oct 1) · Zbl 1279.65009
[18] Maire, S.; Simon, M., A partially reflecting random walk on spheres algorithm for electrical impedance tomography, J. Comput. Phys., 303, 413-430 (2015) · Zbl 1349.94030
[19] Morillon, J. P., Numerical solutions of linear mixed boundary value problems using stochastic representations, Int. J. Numer. Methods Eng., 40, 387-405 (1997)
[20] Müller, M. E., Some continuous Monte Carlo methods for the Dirichlet problem, Ann. Math. Stat., 27, 3, 569-589 (1956) · Zbl 0075.28902
[21] OpenMP, The OpenMP API specification for parallel programming
[22] Papanicolaou, V. G., The probabilistic solution of the third boundary value problem for second order elliptic equations, Probab. Theory Relat. Fields, 87, 27-77 (1990) · Zbl 0688.60063
[23] Sabelfeld, K. K.; Talay, D., Integral formulation of the boundary value problems and the method of random walk on spheres, Monte Carlo Methods Appl., 1, 1-34 (1995) · Zbl 0824.65127
[24] Santosa, F.; Vogelius, M., A backprojection algorithm for electrical impedance imaging, SIAM J. Appl. Math., 216-243 (1990) · Zbl 0691.65087
[25] Schuss, Z., Brownian Dynamics at Boundaries and Interfaces (2015), Springer-Verlag: Springer-Verlag New York
[26] Simonov, N. A., Walk-on-spheres algorithm for solving third boundary value problem, Appl. Math. Lett., 64, 156-161 (2017) · Zbl 1353.65132
[27] Skorokhod, A. V., Stochastic equations for diffusion processes in a bounded region, Theory Probab. Appl., 6, 3, 264-274 (1961) · Zbl 0215.53501
[28] Somersalo, E.; Cheney, M.; Isaacson, D., Existence and uniqueness for electrode models for electric current computed tomography, SIAM J. Appl. Math., 52, 4, 1023-1040 (1992) · Zbl 0759.35055
[29] Sylvester, J.; Uhlmann, G., A uniqueness theorem for an inverse boundary value problem in electrical prospection, Commun. Pure Appl. Math., 39, 91-112 (1986) · Zbl 0611.35088
[30] Tanaka, H., Stochastic differential equations with reflecting boundary condition in convex regions, Hiroshima Math. J., 9, 1, 163-177 (1979) · Zbl 0423.60055
[31] Vauhkonen, M., Tikhonov regularization and prior information in electrical impedance tomography, IEEE Trans. Med. Imaging, 17, 2, 285-293 (1998)
[32] Yan, C.; Cai, W.; Zeng, X., A parallel method for solving Laplace equations with Dirichlet data using local boundary integral equations and random walks, SIAM J. Sci. Comput., 35, B868-B889 (2013) · Zbl 1362.65008
[33] Zhou, Y.; Cai, W., Numerical solution of the Robin problem of Laplace equations with a Feynman-Kac formula and reflecting Brownian motions, J. Sci. Comput., 69, 1, 107-121 (2016) · Zbl 1352.65021
[34] Zhou, Y.; Cai, W.; Hsu, (Elton) P., Computation of local time of reflecting Brownian motion and probabilistic representation of the Neumann problem, Commun. Math. Sci., 15, 237-259 (2017) · Zbl 1358.65005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.