×

Entropy-stable Gauss collocation methods for ideal magneto-hydrodynamics. (English) Zbl 07649272

Summary: In this paper, we present an entropy-stable Gauss collocation discontinuous Galerkin (DG) method on 3D curvilinear meshes for the GLM-MHD equations: the single-fluid magneto-hydrodynamics (MHD) equations with a generalized Lagrange multiplier (GLM) divergence cleaning mechanism. For the continuous entropy analysis to hold and to ensure Galilean invariance in the divergence cleaning technique, the GLM-MHD system requires the use of non-conservative terms.
Traditionally, entropy-stable DG discretizations have used a collocated nodal variant of the DG method, also known as the discontinuous Galerkin spectral element method (DGSEM) on Legendre-Gauss-Lobatto (LGL) points. Recently, J. Chan et al. [SIAM J. Sci. Comput. 41, No. 5, A2938–A2966 (2019; Zbl 1435.65172)] presented an entropy-stable DGSEM scheme that uses Legendre-Gauss points (instead of LGL points) for conservation laws. Our main contribution is to extend the discretization technique of Chan et al. [loc. cit.] to the non-conservative GLM-MHD system.
We provide a numerical verification of the entropy behavior and convergence properties of our novel scheme on 3D curvilinear meshes. Moreover, we test the robustness and accuracy of our scheme with a magneto-hydrodynamic Kelvin-Helmholtz instability problem. The numerical experiments suggest that the entropy-stable DGSEM on Gauss points for the GLM-MHD system is more accurate than the LGL counterpart.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
76Mxx Basic methods in fluid mechanics
35Lxx Hyperbolic equations and hyperbolic systems

Citations:

Zbl 1435.65172

Software:

Athena; HOPR

References:

[1] Chan, J.; Fernandez, D. C.D. R.; Carpenter, M. H.; Del Rey Fernández, D. C.; Carpenter, M. H., Efficient entropy stable Gauss collocation methods, SIAM J. Sci. Comput., 41, A2938-A2966 (2019) · Zbl 1435.65172
[2] Munz, C. D.; Omnes, P.; Schneider, R.; Sonnendrücker, E.; Voß, U., Divergence correction techniques for Maxwell solvers based on a hyperbolic model, J. Comput. Phys., 161, 484-511 (2000) · Zbl 0970.78010
[3] Dedner, A.; Kemm, F.; Kröner, D.; Munz, C. D.; Schnitzer, T.; Wesenberg, M., Hyperbolic divergence cleaning for the MHD equations, J. Comput. Phys., 175, 645-673 (2002) · Zbl 1059.76040
[4] Balsara, D. S.; Kumar, R.; Chandrashekar, P., Globally divergence-free dg scheme for ideal compressible mhd, Commun. Appl. Math. Comput. Sci., 16, 59-98 (2021) · Zbl 1468.65134
[5] Li, F.; Shu, C.-W., Locally divergence-free discontinuous Galerkin methods for mhd equations, J. Sci. Comput., 22, 413-442 (2005) · Zbl 1123.76341
[6] Balsara, D. S., Second-order-accurate schemes for magnetohydrodynamics with divergence-free reconstruction, Astrophys. J. Suppl. Ser., 151, 149 (2004)
[7] Fey, M.; Torrilhon, M., A constrained transport upwind scheme for divergence-free advection, (Hyperbolic Problems: Theory, Numerics, Applications (2003), Springer), 529-538 · Zbl 1134.76394
[8] Balsara, D. S.; Dumbser, M., Divergence-free mhd on unstructured meshes using high order finite volume schemes based on multidimensional Riemann solvers, J. Comput. Phys., 299, 687-715 (2015) · Zbl 1351.76092
[9] Balsara, D. S.; Rumpf, T.; Dumbser, M.; Munz, C.-D., Efficient, high accuracy ader-weno schemes for hydrodynamics and divergence-free magnetohydrodynamics, J. Comput. Phys., 228, 2480-2516 (2009) · Zbl 1275.76169
[10] Godunov, S. K., Symmetric form of the equations of magnetohydrodynamics, (Numerical Methods for Mechanics of Continuum Medium, vol. 1 (1972)), 26-34
[11] Powell, K. G., An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension) (1994), Technical Report
[12] Powell, K. G.; Roe, P. L.; Linde, T. J.; Gombosi, T. I.; De Zeeuw, D. L., A solution-adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys., 154, 284-309 (1999) · Zbl 0952.76045
[13] Derigs, D.; Winters, A. R.; Gassner, G. J.; Walch, S.; Bohm, M., Ideal GLM-MHD: about the entropy consistent nine-wave magnetic field divergence diminishing ideal magnetohydrodynamics equations, J. Comput. Phys., 364, 420-467 (2018) · Zbl 1392.76037
[14] Chandrashekar, P.; Klingenberg, C., Entropy stable finite volume scheme for ideal compressible MHD on 2-D Cartesian meshes, SIAM J. Numer. Anal., 54, 1313-1340 (2016) · Zbl 1381.76213
[15] Hindenlang, F.; Gassner, G. J.; Altmann, C.; Beck, A.; Staudenmaier, M.; Munz, C. D., Explicit discontinuous Galerkin methods for unsteady problems, Comput. Fluids, 61, 86-93 (2012) · Zbl 1365.76117
[16] Wang, Z. J.; Fidkowski, K.; Abgrall, R.; Bassi, F.; Caraeni, D.; Cary, A.; Deconinck, H.; Hartmann, R.; Hillewaert, K.; Huynh, H. T.; Kroll, N.; May, G.; Persson, P.-O.; van Leer, B.; Visbal, M.; van Leer, B.; Visbal, M., High-order CFD methods: current status and perspective, Int. J. Numer. Methods Fluids, 72, 811-845 (2013) · Zbl 1455.76007
[17] Cockburn, B.; Karniadakis, G. E.; Shu, C.-W., The development of discontinuous Galerkin methods, (Discontinuous Galerkin Methods, vol. 11 (2000)), 3-50 · Zbl 0989.76045
[18] Rivière, B., Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations Theory and Implementation (2008), SIAM · Zbl 1153.65112
[19] Kopriva, D. A.; Woodruff, S. L.; Hussaini, M. Y., Computation of electromagnetic scattering with a non-conforming discontinuous spectral element method, Int. J. Numer. Methods Eng., 53, 105-122 (2002) · Zbl 0994.78020
[20] Rueda-Ramírez, A. M.; Manzanero, J.; Ferrer, E.; Rubio, G.; Valero, E., A p-multigrid strategy with anisotropic p-adaptation based on truncation errors for high-order discontinuous Galerkin methods, J. Comput. Phys., 378, 209-233 (2019) · Zbl 1416.65357
[21] Rueda-Ramírez, A. M.; Rubio, G.; Ferrer, E.; Valero, E., Truncation error estimation in the p-anisotropic discontinuous Galerkin spectral element method, J. Sci. Comput., 78, 433-466 (2019) · Zbl 1410.65353
[22] Gassner, G. J., A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods, SIAM J. Sci. Comput., 35, A1233-A1253 (2013) · Zbl 1275.65065
[23] Fisher, T. C.; Carpenter, M. H.; Nordström, J.; Yamaleev, N. K.; Swanson, C., Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: theory and boundary conditions, J. Comput. Phys., 234, 353-375 (2013) · Zbl 1284.65102
[24] Carpenter, M. H.; Fisher, T. C.; Nielsen, E. J.; Frankel, S. H., Entropy stable spectral collocation schemes for the Navier-Stokes equations: discontinuous interfaces, SIAM J. Sci. Comput., 36, B835-B867 (2014) · Zbl 1457.65140
[25] Wintermeyer, N.; Winters, A. R.; Gassner, G. J.; Kopriva, D. A., An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry, J. Comput. Phys., 340, 200-242 (2017) · Zbl 1380.65291
[26] Manzanero, J.; Rubio, G.; Kopriva, D. A.; Ferrer, E.; Valero, E., An entropy-stable discontinuous Galerkin approximation for the incompressible Navier-Stokes equations with variable density and artificial compressibility, J. Comput. Phys., 408, Article 109241 pp. (2020) · Zbl 07505602
[27] Gassner, G. J.; Winters, A. R.; Hindenlang, F. J.; Kopriva, D. A., The BR1 scheme is stable for the compressible Navier-Stokes equations, J. Sci. Comput., 77, 154-200 (2018) · Zbl 1407.65189
[28] Renac, F., Entropy stable DGSEM for nonlinear hyperbolic systems in nonconservative form with application to two-phase flows, J. Comput. Phys., 382, 1-26 (2019) · Zbl 1451.76073
[29] Manzanero, J.; Rubio, G.; Kopriva, D. A.; Ferrer, E.; Valero, E., Entropy-stable discontinuous Galerkin approximation with summation-by-parts property for the incompressible Navier-Stokes/Cahn-Hilliard system, J. Comput. Phys., 408, Article 109363 pp. (2020) · Zbl 07505633
[30] Coquel, F.; Marmignon, C.; Rai, P.; Renac, F., An entropy stable high-order discontinuous Galerkin spectral element method for the Baer-Nunziato two-phase flow model, J. Comput. Phys., 431, Article 110135 pp. (2021) · Zbl 07511452
[31] Bohm, M.; Winters, A. R.; Gassner, G. J.; Derigs, D.; Hindenlang, F.; Saur, J., An entropy stable nodal discontinuous Galerkin method for the resistive MHD equations. Part I: theory and numerical verification, J. Comput. Phys., 1, 1-35 (2018) · Zbl 07508372
[32] Rojas, D.; Boukharfane, R.; Dalcin, L.; Fernández, D. C.D. R.; Ranocha, H.; Keyes, D. E.; Parsani, M., On the robustness and performance of entropy stable discontinuous collocation methods, J. Comput. Phys., 426, Article 109891 pp. (2021) · Zbl 07510039
[33] Ranocha, H., Shallow water equations: split-form, entropy stable, well-balanced, and positivity preserving numerical methods, GEM Int. J. Geomath., 8, 85-133 (2017) · Zbl 1432.65156
[34] Abgrall, R.; Nordström, J.; Öffner, P.; Tokareva, S., Analysis of the SBP-SAT stabilization for finite element methods part I: linear problems, J. Sci. Comput., 85, 1-29 (2020) · Zbl 1456.65100
[35] Svärd, M.; Nordström, J., Review of summation-by-parts schemes for initial-boundary-value problems, J. Comput. Phys., 268, 17-38 (2014) · Zbl 1349.65336
[36] Fernández, D. C.D. R.; Hicken, J. E.; Zingg, D. W., Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations, Comput. Fluids, 95, 171-196 (2014) · Zbl 1390.65064
[37] Chan, J.; Wilcox, L. C., On discretely entropy stable weight-adjusted discontinuous Galerkin methods: curvilinear meshes, J. Comput. Phys., 378, 366-393 (2019) · Zbl 1416.65340
[38] Ortleb, S., Kinetic energy preserving dg schemes based on summation-by-parts operators on interior node distributions, PAMM, 16, 857-858 (2016)
[39] Ortleb, S., A kinetic energy preserving dg scheme based on Gauss-Legendre points, J. Sci. Comput., 71, 1135-1168 (2017) · Zbl 1516.65095
[40] Del Rey Fernández, D. C.; Boom, P. D.; Carpenter, M. H.; Zingg, D. W., Extension of tensor-product generalized and dense-norm summation-by-parts operators to curvilinear coordinates, J. Sci. Comput., 80, 1957-1996 (2019) · Zbl 1428.65004
[41] Hicken, J. E.; Del Rey Fernández, D. C.; Zingg, D. W., Multidimensional summation-by-parts operators: general theory and application to simplex elements, SIAM J. Sci. Comput., 38, A1935-A1958 (2016) · Zbl 1382.65355
[42] Chan, J.; Ranocha, H.; Rueda-Ramírez, A. M.; Gassner, G.; Warburton, T., On the entropy projection and the robustness of high order entropy stable discontinuous Galerkin schemes for under-resolved flows, Front. Phys., 356 (2022)
[43] Wu, K., Positivity-preserving analysis of numerical schemes for ideal magnetohydrodynamics, SIAM J. Numer. Anal., 56, 2124-2147 (2018) · Zbl 1391.76369
[44] Wu, K.; Shu, C.-W., Provably positive high-order schemes for ideal magnetohydrodynamics: analysis on general meshes, Numer. Math., 142, 995-1047 (2019) · Zbl 1419.76446
[45] Rueda-Ramírez, A. M.; Ferrer, E.; Kopriva, D. A.; Rubio, G.; Valero, E., A statically condensed discontinuous Galerkin spectral element method on Gauss-Lobatto nodes for the compressible Navier-Stokes equations, J. Comput. Phys. (2020) · Zbl 07510067
[46] Rueda-Ramírez, A. M.; Hennemann, S.; Hindenlang, F. J.; Winters, A. R.; Gassner, G. J., An entropy stable nodal discontinuous Galerkin method for the resistive MHD equations. Part II: subcell finite volume shock capturing, J. Comput. Phys., 444 (2021) · Zbl 07515469
[47] Ismail, F.; Roe, P. L., Affordable, entropy-consistent Euler flux functions II: entropy production at shocks, J. Comput. Phys., 228, 5410-5436 (2009) · Zbl 1280.76015
[48] Derigs, D.; Winters, A. R.; Gassner, G. J.; Walch, S., A novel averaging technique for discrete entropy-stable dissipation operators for ideal MHD, J. Comput. Phys., 330, 624-632 (2017) · Zbl 1378.76131
[49] Gassner, G. J.; Winters, A. R.; Kopriva, D. A., Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations, J. Comput. Phys., 327, 39-66 (2016) · Zbl 1422.65280
[50] Fisher, T. C.; Carpenter, M. H., High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains, J. Comput. Phys., 252, 518-557 (2013) · Zbl 1349.65293
[51] Hennemann, S.; Rueda-Ramírez, A. M.; Hindenlang, F. J.; Gassner, G. J., A provably entropy stable subcell shock capturing approach for high order split form DG for the compressible Euler equations, J. Comput. Phys., Article 109935 pp. (2020) · Zbl 07510051
[52] Tadmor, E., Entropy functions for symmetric systems of conservation laws, J. Math. Anal. Appl., 122, 355-359 (1987) · Zbl 0624.35057
[53] Tadmor, E., A minimum entropy principle in the gas dynamics equations, Appl. Numer. Math., 2, 211-219 (1986) · Zbl 0625.76084
[54] Tadmor, E., Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems, Acta Numer., 12, 451-512 (2003) · Zbl 1046.65078
[55] Volpert, A., The spaces bv and quasilinear equations, Math. USSR Sb., 2, 225-267 (1967) · Zbl 0168.07402
[56] Parés, C., Numerical methods for nonconservative hyperbolic systems: a theoretical framework, SIAM J. Numer. Anal., 44, 300-321 (2006) · Zbl 1130.65089
[57] Chan, J., On discretely entropy conservative and entropy stable discontinuous Galerkin methods, J. Comput. Phys., 362, 346-374 (2018) · Zbl 1391.76310
[58] Chan, J., Skew-symmetric entropy stable modal discontinuous Galerkin formulations, J. Sci. Comput., 81, 459-485 (2019) · Zbl 1466.65123
[59] Kopriva, D. A., Metric identities and the discontinuous spectral element method on curvilinear meshes, J. Sci. Comput., 26, 301-327 (2006) · Zbl 1178.76269
[60] Kopriva, D. A., Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers (2009), Springer Science & Business Media · Zbl 1172.65001
[61] Manzanero, J., A high-order discontinuous Galerkin multiphase flow solver for industrial applications (2020), Universidad Politécnica de Madrid, Ph.D. thesis
[62] Carpenter, M. H.; Kennedy, C. A., Fourth-order 2N-storage Runge-Kutta schemes (1994), Technical Report
[63] Hindenlang, F.; Bolemann, T.; Munz, C.-D., Mesh Curving Techniques for High Order Discontinuous Galerkin Simulations (2015), University of Stuttgart, Ph.D. thesis
[64] Gassner, G.; Kopriva, D. A., A comparison of the dispersion and dissipation errors of Gauss and Gauss-Lobatto discontinuous Galerkin spectral element methods, SIAM J. Sci. Comput., 33, 2560-2579 (2011) · Zbl 1255.65089
[65] Stone, J. M.; Gardiner, T. A.; Teuben, P.; Hawley, J. F.; Simon, J. B., Athena: a new code for astrophysical MHD, Astrophys. J. Suppl. Ser., 178, 137-177 (2008)
[66] F. Hindenlang, G. Gassner, A new entropy conservative two-point flux for ideal mhd equations derived from first principles, Talk presented at HONOM, 2019.
[67] Winters, A. R.; Gassner, G. J., Affordable, entropy conserving and entropy stable flux functions for the ideal MHD equations, J. Comput. Phys., 304, 72-108 (2016) · Zbl 1349.76407
[68] Mignone, A.; Tzeferacos, P.; Bodo, G., High-order conservative finite difference GLM-MHD schemes for cell-centered MHD, J. Comput. Phys., 229, 5896-5920 (2010) · Zbl 1425.76305
[69] T. Chen, C.-W. Shu, Review of entropy stable discontinuous Galerkin methods for systems of conservation laws on unstructured simplex meshes, 2020.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.