×

Higher-order dynamic mode decomposition on-the-fly: a low-order algorithm for complex fluid flows. (English) Zbl 07649270

Summary: This article presents a new method to identify the main patterns describing the flow motion in complex flows. The algorithm is an extension of the higher-order dynamic mode decomposition (HODMD), which compresses the snapshots from the analysed database and progressively updates new compressed snapshots on-the-fly, so it is denoted as HODMD on-the-fly (HODMD-of). This algorithm can be applied in parallel to the numerical simulations (or experiments), and it exhibits two main advantages over offline algorithms: (i) it automatically selects on-the-fly the number of necessary snapshots from the database to identify the relevant dynamics; and (ii) it can be used from the beginning of a numerical simulation (or experiment), since it uses a sliding-window to automatically select, also on-the-fly, the suitable interval to perform the data analysis, i.e. it automatically identifies and discards the transient dynamics. The HODMD-of algorithm is suitable to build reduced order models, which have a much lower computational cost than the original simulation. The performance of the method has been tested in three different cases: the axi-symmetric synthetic jet, the three-dimensional wake of a circular cylinder and the turbulent wake behind a wall-mounted square cylinder. The obtained speed-up factors are around 7 with respect to HODMD; this value depends on the simulation and the configuration of the hyperparameters. HODMD-of also provides a significant reduction of the memory requirements, between 40– 80% amongst the two- and three-dimensional cases studied in this paper.

MSC:

76Dxx Incompressible viscous fluids
76Exx Hydrodynamic stability
37Mxx Approximation methods and numerical treatment of dynamical systems

Software:

Nek5000; odmd; HODMD; Matlab
Full Text: DOI

References:

[1] Hunt, J.; Wray, A.; Moin, P., Eddies, stream, and convergence zones in turbulent flows, 1103 (1968), Center for Turbulence Research Report, CTR-S88
[2] Haller, G., An objective definition of a vortex, J. Fluid Mech., 525, 1-26 (2005) · Zbl 1065.76031
[3] Antonia, R., Conditional sampling in turbulence measurements, Annu. Rev. Fluid Mech., 13, 131-156 (1981)
[4] Sirovich, L., Turbulence and the dynamics of coherent structures. Parts I-III, Q. Appl. Math., 45, 561-571 (1987) · Zbl 0676.76047
[5] Schmid, P., Dynamic mode decomposition of numerical and experimental data, J. Fluid Mech., 656, 5-28 (2010) · Zbl 1197.76091
[6] Le Clainche, S.; Vega, J. M., Analyzing nonlinear dynamics via data-driven dynamic mode decomposition-like methods, Complexity, 2018, Article 6920783 pp. (2018)
[7] Jovanovic, M.; Schmid, P.; Nichols, J., Sparsity-promoting dynamic mode decomposition, Phys. Fluids, 26, Article 024103 pp. (2014)
[8] Hemati, M.; Rowley, C.; Deem, E.; Cattafesta, L., De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets, (Theor. Comp. Fluid Dyn. (2017), Springer-Verlag), 349-368
[9] Chen, K.; Tu, J.; Rowley, C., Variants of dynamic mode decomposition: boundary condition, Koopman and Fourier analyses, J. Nonlinear Sci., 22, 8871-8875 (2012)
[10] Williams, M.; Kevrekidis, I.; Rowley, C., A data driven approximation of the Koopman operator: extending dynamic mode decomposition, J. Nonlinear Sci., 25, 1307-1346 (2015) · Zbl 1329.65310
[11] Le Clainche, S.; Vega, J. M., Higher order dynamic mode decomposition, SIAM J. Appl. Dyn. Syst., 16, 882-925 (2017) · Zbl 1373.37169
[12] Takens, F., Detecting Strange Attractors in Turbulence, 366-381 (1981) · Zbl 0513.58032
[13] Le Clainche, S.; Vega, J. M., Higher order dynamic mode decomposition of noisy experimental data: the flow structure of a zero-net-mass-flux jet, Exp. Therm. Fluid Sci., 88, 336-353 (2017)
[14] Le Clainche, S.; Vega, J. M., Higher order dynamic mode decomposition to identify and extrapolate flow patterns, Phys. Fluids, 29, Article 084102 pp. (2017)
[15] Le Clainche, S.; Izvassarov, D.; Rosti, M.; Brandt, L.; Tammisola, O., Coherent structures in the turbulent flow of an elastoviscoplastic fluid, J. Fluid Mech., 888, A5 (2020) · Zbl 1460.76476
[16] Taira, K.; Hemati, M. S.; Brunton, S. L.; Sun, Y.; Duraisamy, K.; Bagheri, S.; Dawson, S. T.M.; Yeh, C., Modal Analysis of Fluid Flows: Applications and Outlook, AIAAJ, vol. 58 (2020)
[17] Tu, J. H.; Rowley, C. W.; Luchtenburg, D. M.; Brunton, S. L.; Kutz, J. N., On dynamic mode decomposition: theory and applications, J. Comput. Phys., 1, 391-421 (2014) · Zbl 1346.37064
[18] Benner, P.; Gugercin, S.; Willcox, K., A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev., 57, 483-531 (2015) · Zbl 1339.37089
[19] Hesthaven, J. S.; Rozza, G.; Stamm, B., Certified Reduced Basis Methods for Parametrized Partial Differential Equations (2015), Springer
[20] Hemati, M.; Williams, M.; Rowley, C., Dynamic mode decomposition for large and streaming datasets, Phys. Fluids, 26, Article 111701 pp. (2014)
[21] Hemati, M.; Deem, E.; Williams, M.; Rowley, C.; Cattafesta, L., Separation control with noise-robust variants of dynamic mode decomposition, (54th AIAA Aerospace Sciences Meeting (2016)), 1103
[22] Matsumoto, D.; Indinger, T., On-the-fly algorithm for dynamic mode decomposition using incremental singular value decomposition and total least squares (2017)
[23] Zhang, H.; Rowley, C.; Deem, E.; Cattafesta, L., Online dynamic mode decomposition for time-varying systems, SIAM J. Appl. Dyn. Syst., 18, 1586-1609 (2019) · Zbl 07122844
[24] Erichson, N.; Mathelin, L.; Kutz, J.; Brunton, S., Randomized dynamic mode decomposition, SIAM J. Appl. Dyn. Syst., 18, 1867-1891 (2019) · Zbl 1427.65410
[25] Le, S., Clainche, prediction of the optimal vortex in synthetic jets, Energies, 12 (2019)
[26] Matlab, Version R2020a Update 6 (2020), The MathWorks Inc.: The MathWorks Inc. Natick, Massachusetts
[27] Vega, J. M.; Le, S., Clainche, Higher Order Dynamic Mode Decomposition and Its Applications (2020), Elsevier
[28] Vega, J. M.; Le Clainche, S., Repository from the book higher order dynamic mode decomposition and its applications (2020), Available online
[29] Tucker, L. R., Some mathematical notes on three-mode factor analysis, Psychometrika, 16, 279-311 (1966)
[30] Eivazi, H.; Guastoni, L.; Schlatter, P.; Azizpour, H.; Vinuesa, R., Recurrent neural networks and Koopman-based frameworks for temporal predictions in a low-order model of turbulence, Int. J. Heat Fluid Flow, 90, Article 108816 pp. (2021)
[31] Le Clainche, S.; Pérez, J. M.; Vega, J. M., Spatio-temporal flow structures in the three-dimensional wake of a circular cylinder, Fluid Dyn. Res., 50, Article 051406 pp. (2018)
[32] Vinuesa, R.; Schlatter, P.; Malm, J.; Mavriplis, C.; Henningson, D. S., Direct numerical simulation of the flow around a wall-mounted square cylinder under various inflow conditions, J. Turbul., 16, 555-587 (2015)
[33] Wang, H.; Menon, S., Fuel-air mixing enhancement by synthetic microjets, AIAA J., 39, 2308-2319 (2001)
[34] Pavlova, A.; Amitay, M., Electronic cooling using synthetic jet impingement, J. Heat Transf., 128, 897-907 (2006)
[35] Smith, B.; Glezer, A., Jet vectoring using synthetic jets, J. Fluid Mech., 458, 1-24 (2002) · Zbl 0993.76506
[36] Glezer, A.; Amitay, M., Synthetic jets, Annu. Rev. Fluid Mech., 34, 503-529 (2002) · Zbl 0994.76509
[37] Cattafesta, L.; Sheplak, M., Actuators for active flow control, Annu. Rev. Fluid Mech., 43, 247-272 (2010) · Zbl 1299.76108
[38] Atzori, M.; Vinuesa, R.; Fahland, G.; Stroh, A.; Gatti, D.; Frohnapfel, B.; Schlatter, P., Aerodynamic effects of uniform blowing and suction on a NACA4412 airfoil, Flow Turbul. Combust., 105, 735-759 (2020)
[39] DeMont, E.; Gosline, J., Mechanics of jet propulsion in the hydromedusan jellyfish, polyorchis penicillatus, J. Exp. Biol., 134, 347-361 (1988)
[40] Le Clainche, S.; Pérez, J. M.; Vega, J.; Soria, J., Near and far field laminar flow structures in an axisymmetric zero-net-mass-flux jet, Aerosp. Sci. Technol., 105, Article 105920 pp. (2020)
[41] Carter, J.; Soria, J., The evolution of round zero-net-mass-flux jets, J. Fluid Mech., 472, 167-200 (2002) · Zbl 1024.76502
[42] Fisher, P. F.; Lottes, J. W.; Kerkemeier, S. G., Nek5000: open source spectral element CFD solver (2008), Available online
[43] Jackson, C., A finite-element study of the onset of vortex shedding in flow past variously shaped bodies, J. Fluid Mech., 182, 23-45 (1987) · Zbl 0639.76041
[44] Provanasal, M.; Mathis, C.; Boyer, L., Bénard-von Kármán instability: transient and forcing regimes, J. Fluid Mech., 182, 1-22 (1987) · Zbl 0641.76046
[45] Barkley, D.; Henderson, R., Three-dimensional Floquet stability analysis of the wake of a circular cylinder, J. Fluid Mech., 322, 215-241 (1996) · Zbl 0882.76028
[46] Blackburn, H.; Marques, F.; Lopez, J., Symmetry breaking of two-dimensional time-periodic wakes, J. Fluid Mech., 522, 395-411 (2005) · Zbl 1065.76097
[47] Vidal, A.; Vinuesa, R.; Schlatter, P.; Nagib, H., Influence of corner geometry on the secondary flow in turbulent square ducts, Int. J. Heat Fluid Flow, 67, 69-78 (2017)
[48] Noorani, A.; Vinuesa, R.; Brandt, L.; Schlatter, P., Aspect ratio effect on particle transport in turbulent duct flows, Phys. Fluids, 28, Article 115103 pp. (2016)
[49] Torres, P.; Le Clainche, S.; Vinuesa, R., On the experimental, numerical and data-driven methods to study urban flows, Energies, 14, 1310 (2021)
[50] Jeong, J.; Hussain, F., On the identification of a vortex, J. Fluid Mech., 285, 69-94 (1995) · Zbl 0847.76007
[51] Amor, C.; Pérez, J. M.; Schlatter, P.; Vinuesa, R.; Le Clainche, S., Modeling the turbulent wake behind a wall-mounted square cylinder, Log. J. IGPL, 30, 263-276 (2022)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.