×

Minimal mass design of clustered tensegrity structures. (English) Zbl 07644877

Summary: This paper presents a minimal mass design approach to the clustered tensegrity structures (CTS). By minimal mass, we mean, for a given clustered tensegrity structure subject to prescribed external loads, the minimal mass is achieved when all the structure members simultaneously fail (buckle or yield). This paper helps to find the lower bound of the required mass of the CTS. Firstly, we introduce the connectivity and clustering definitions through respective matrices and derive the nonlinear clustered tensegrity statics equation in terms of the nodal vector of the structure. Since the mass of each member is in a one-to-one correspondence to its force density (force by unit length), the static equilibrium equations of the CTS with respect to the force density and force vectors are also given. Then, we formulated the mass and gravity of hollow bars and strings subject to buckling and yielding conditions. Finally, a nonlinear optimization algorithm is presented to compute the minimal mass of any CTS with any given external force and topology. We also demonstrate that the traditional tensegrity structure (TTS) is a particular case of the CTS by defining the cluster matrix as an identity matrix. At last, numerical examples are given to validate the CTS minimal mass design approach. The method proposed by this research can be used for the lightweight design of tensegrity, truss, cable nets, membrane structures, etc.

MSC:

74-XX Mechanics of deformable solids
81-XX Quantum theory
Full Text: DOI

References:

[1] Liedl, T.; Högberg, B.; Tytell, J.; Ingber, D. E.; Shih, W. M., Self-assembly of three-dimensional prestressed tensegrity structures from DNA, Nature Nanotechnol., 5, 7, 520-524 (2010)
[2] Wang, N.; Naruse, K.; Stamenović, D.; Fredberg, J. J.; Mijailovich, S. M.; Tolić-Nørrelykke, I. M.; Polte, T.; Mannix, R.; Ingber, D. E., Mechanical behavior in living cells consistent with the tensegrity model, Proc. Natl. Acad. Sci., 98, 14, 7765-7770 (2001)
[3] Simmons, A. H.; Michal, C. A.; Jelinski, L. W., Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk, Science, 271, 5245, 84-87 (1996)
[4] Kjær, M., Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading, Physiol. Rev., 84, 2, 649-698 (2004)
[5] Lalvani, H., Origins of tensegrity: views of Emmerich, Fuller and Snelson, Int. J. Space Struct., 11, 1-2, 27 (1996)
[6] Skelton, R. E.; de Oliveira, M. C., Tensegrity Systems, Vol. 1 (2009), Springer · Zbl 1175.74052
[7] Bauer, J.; Kraus, J. A.; Crook, C.; Rimoli, J. J.; Valdevit, L., Tensegrity metamaterials: Toward failure-resistant engineering systems through delocalized deformation, Adv. Mater., 33, 10, Article 2005647 pp. (2021)
[8] Intrigila, C.; Micheletti, A.; Nodargi, N. A.; Artioli, E.; Bisegna, P., Fabrication and experimental characterization of a bistable tensegrity-like unit for lattice metamaterials, Addit. Manuf., Article 102946 pp. (2022)
[9] Liu, K.; Zegard, T.; Pratapa, P. P.; Paulino, G. H., Unraveling tensegrity tessellations for metamaterials with tunable stiffness and bandgaps, J. Mech. Phys. Solids, 131, 147-166 (2019)
[10] Aloui, O.; Flores, J.; Orden, D.; Rhode-Barbarigos, L., Cellular morphogenesis of three-dimensional tensegrity structures, Comput. Methods Appl. Mech. Engrg., 346, 85-108 (2019) · Zbl 1440.70001
[11] Feng, X.; Zhang, W.; Jianbo, S.; Chen, Y.; Sergio, Z., The topology finding algorithm of tensegrity structures based on scheme matrix strategy, Compos. Struct., 275, Article 114429 pp. (2021)
[12] Fraddosio, A.; Pavone, G.; Piccioni, M. D., A novel method for determining the feasible integral self-stress states for tensegrity structures, Curved Layer. Struct., 8, 1, 70-88 (2021)
[13] Guo, Y.; Peng, H., Full-actuation rolling locomotion with tensegrity robot via deep reinforcement learning, (2021 5th International Conference on Robotics and Automation Sciences. 2021 5th International Conference on Robotics and Automation Sciences, ICRAS (2021), IEEE), 51-55
[14] Pajunen, K.; Johanns, P.; Pal, R. K.; Rimoli, J. J.; Daraio, C., Design and impact response of 3D-printable tensegrity-inspired structures, Mater. Des., 182, Article 107966 pp. (2019)
[15] Shah, D. S.; Booth, J. W.; Baines, R. L.; Wang, K.; Vespignani, M.; Bekris, K.; Kramer-Bottiglio, R., Tensegrity robotics, Soft Robotics (2021)
[16] Feng, X.; Wu, Z.; Wang, Z.; Luo, J.; Xu, X.; Qiu, Z., Design and experiments of a bio-inspired tensegrity spine robot for active space debris capturing, J. Phys.: Conf. Ser., 1885, Article 052024 pp. (2021)
[17] Yang, S.; Sultan, C., Deployment of foldable tensegrity-membrane systems via transition between tensegrity configurations and tensegrity-membrane configurations, Int. J. Solids Struct., 160, 103-119 (2019)
[18] Santos, F.; Caroço, C.; Amendola, A.; Miniaci, M.; Fraternali, F., 3D tensegrity braces with superelastic response for seismic control, Int. J. Multiscale Comput. Eng. (2022)
[19] Fraddosio, A.; Pavone, G.; Piccioni, M. D., Minimal mass and self-stress analysis for innovative V-Expander tensegrity cells, Compos. Struct., 209, 754-774 (2019)
[20] Su, X.; Chen, M.; Majji, M.; Skelton, R. E., Minimal mass design of a tensegrity tower for lunar electromagnetic launching (2021), arXiv preprint arXiv:2106.11443
[21] Chen, M., DREAMS: Drilling and Extraction Automated System (2021), NASA, (Ph.D. thesis)
[22] Feng, Y.; Yuan, X.; Samy, A., Analysis of new wave-curved tensegrity dome, Eng. Struct., 250, Article 113408 pp. (2022)
[23] Ma, S.; Chen, M.; Yuan, X.; Skelton, R. E., Design and analysis of deployable clustered tensegrity cable domes (2021), arXiv preprint arXiv:2106.08424
[24] Lee, H.; Jang, Y.; Choe, J. K.; Lee, S.; Song, H.; Lee, J. P.; Lone, N.; Kim, J., 3D-printed programmable tensegrity for soft robotics, Science Robotics, 5, 45 (2020), eaay9024
[25] Nagase, K.; Skelton, R., Minimal mass tensegrity structures, J. Int. Assoc. Shell Spatial Struct., 55, 1, 37-48 (2014)
[26] Carpentieri, G.; Modano, M.; Fabbrocino, F.; Feo, L.; Fraternali, F., On the minimal mass reinforcement of masonry structures with arbitrary shapes, Meccanica, 52, 7, 1561-1576 (2017)
[27] Chen, M.; Skelton, R. E., A general approach to minimal mass tensegrity, Compos. Struct., 248, Article 112454 pp. (2020)
[28] Ma, S.; Chen, M.; Skelton, R. E., Design of a new tensegrity cantilever structure, Compos. Struct., 243, Article 112188 pp. (2020)
[29] Goyal, R.; Skelton, R. E.; Hernandez, E. A.P., Design of minimal mass load-bearing tensegrity lattices, Mech. Res. Commun., 103, Article 103477 pp. (2020)
[30] Wang, Y.; Xu, X.; Luo, Y., Minimal mass design of active tensegrity structures, Eng. Struct., 234, Article 111965 pp. (2021)
[31] Moored, K.; Bart-Smith, H., Investigation of clustered actuation in tensegrity structures, Int. J. Solids Struct., 46, 17, 3272-3281 (2009) · Zbl 1167.74499
[32] Ali, N. B.H.; Rhode-Barbarigos, L.; Smith, I. F., Analysis of clustered tensegrity structures using a modified dynamic relaxation algorithm, Int. J. Solids Struct., 48, 5, 637-647 (2011) · Zbl 1236.74191
[33] Kan, Z.; Song, N.; Peng, H.; Chen, B.; Song, X., A comprehensive framework for multibody system analysis with clustered cables: examples of tensegrity structures, Int. J. Solids Struct., 210, 289-309 (2021)
[34] Skelton, R.; Fraternali, F.; Carpentieri, G.; Micheletti, A., Minimum mass design of tensegrity bridges with parametric architecture and multiscale complexity, Mech. Res. Commun., 58, 124-132 (2014)
[35] Ma, S.; Lu, K.; Chen, M.; Skelton, R. E., Design and control analysis of a deployable clustered hyperbolic paraboloid cable net (2022), arXiv preprint arXiv:2206.13511
[36] Kwan, A.; Pellegrino, S., Matrix formulation of macro-elements for deployable structures, Comput. Struct., 50, 2, 237-254 (1994) · Zbl 0808.73035
[37] Kwan, A.; You, Z.; Pellegrino, S., Active and passive cable elements in deployable/retractable masts, Int. J. Space Struct., 8, 1-2, 29-40 (1993)
[38] Smaili, A.; Motro, R., Folding/unfolding of tensegrity systems by removal of self-stress, (International Symposium on Shell and Spatial Structures: Theory, Technique, Valuation, Maintenance. International Symposium on Shell and Spatial Structures: Theory, Technique, Valuation, Maintenance, Bucarest 6-9 Septembre 2005 (2005), IASS), 595-602
[39] Veuve, N.; Safaei, S. D.; Smith, I. F., Deployment of a tensegrity footbridge, J. Struct. Eng., 141, 11, Article 04015021 pp. (2015)
[40] Usevitch, N. S.; Hammond, Z. M.; Schwager, M.; Okamura, A. M.; Hawkes, E. W.; Follmer, S., An untethered isoperimetric soft robot, Science Robotics, 5, 40 (2020), eaaz0492
[41] Ma, S.; Chen, M.; Skelton, R. E., Tensegrity system dynamics based on finite element method, Compos. Struct., 280, Article 114838 pp. (2022)
[42] Zhang, J.; Ohsaki, M., Adaptive force density method for form-finding problem of tensegrity structures, Int. J. Solids Struct., 43, 18-19, 5658-5673 (2006) · Zbl 1120.74852
[43] Ma, S.; Chen, M.; Skelton, R. E., Dynamics and control of clustered tensegrity systems, Eng. Struct., 264, Article 114391 pp. (2022)
[44] Meyer, C., Matrix Analysis and Applied Linear Algebra (2000), SIAM · Zbl 0962.15001
[45] Nagase, K.; Skelton, R., Double-helix tensegrity structures, AIAA J., 53, 4, 847-862 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.