×

Complex-self-adjointness. (English) Zbl 07640518

Let \(H\) be a linear operator in a complex separable Hilbert space \(\mathcal{H}\). Then \(H\) is said to be complex-symmetric with respect to \(C\) if the adjoint \(H^*\) is an extension of \(CHC^{-}\) for some antiunitary operator \(C\) in \(\mathcal{H}\). Furthermore, if \(H^*=CHC^{-1}\), it is said to be complex-self-adjoint with respect to \(C\).
There have been substantial works on this class of operators subject to \(C^2=I\). Particularly, Garcia and Putinar’s work on the subject stands out. In this paper, the authors extend some of S. R. Garcia and M. Putinar’s results in [Trans. Am. Math. Soc. 359, No. 8, 3913–3931 (2007; doi:10.1090/S0002-9947-07-04213-4)] to the general case. This paper also includes examples of complex-self-adjoint operators in different Hilbert spaces that are not necessarily subject to \(C^2=I\).

MSC:

47A15 Invariant subspaces of linear operators
47B28 Nonselfadjoint operators
47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
81Q12 Nonselfadjoint operator theory in quantum theory including creation and destruction operators

References:

[1] Azizov, TY; Iokhvidov, IS, Linear operators in spaces with an indefinite metric (1989), UK: John Wiley & Sons, UK · Zbl 0714.47028
[2] Bagarello, F., Gazeau, J.-P., Szafraniec, F. H., Znojil, M.: (Eds.), Non-selfadjoint operators in quantum physics: mathematical aspects, Wiley-Interscience, 432 pages (2015) · Zbl 1329.81021
[3] Borisov, D.; Krejčiřík, D., \( \cal{PT} \)-symmetric waveguides, Integ. Equ. Oper. Theory, 62, 489-515 (2008) · Zbl 1178.35141 · doi:10.1007/s00020-008-1634-1
[4] Câmara, MC; Kliś-Garlicka, K.; Lanucha, B.; Ptak, M., Conjugations in \(l^2\) and their invariants, Anal. Math. Phys., 10, 22 (2020) · Zbl 1444.47043 · doi:10.1007/s13324-020-00364-5
[5] Câmara, MC; Kliś-Garlicka, K.; Ptak, M., Complex symmetric completions of partial operator matrices, Linear Multilinear Algebra, 69, 1446-1467 (2021) · Zbl 1466.15032 · doi:10.1080/03081087.2019.1631246
[6] Edmunds, DE; Evans, WD, Spectral theory and differential operators (1987), Oxford: Oxford University Press, Oxford · Zbl 0628.47017
[7] Garcia, SR; Mashreghi, J.; Ross, WT, Introduction to model spaces and their operators (2016), Cambridge: Cambridge University Press, Cambridge · Zbl 1361.30001 · doi:10.1017/CBO9781316258231
[8] Garcia, SR; Prodan, E.; Putinar, M., Mathematical and physical aspects of complex symmetric operators, J. Phys. A: Math. Theor., 47 (2014) · Zbl 1338.81200 · doi:10.1088/1751-8113/47/35/353001
[9] Garcia, SR; Putinar, M., Complex symmetric operators and applications, Trans. Amer. Math. Soc., 358, 1285-1315 (2006) · Zbl 1087.30031 · doi:10.1090/S0002-9947-05-03742-6
[10] Garcia, SR; Putinar, M., Complex symmetric operators and applications II, Trans. Amer. Math. Soc., 359, 3913-3931 (2007) · Zbl 1123.47030 · doi:10.1090/S0002-9947-07-04213-4
[11] Glazman, I. M.: Direct methods of qualitative spectral analysis of singular differential operators, Israel Program for Scientific Translations, (1965) · Zbl 0143.36505
[12] Kato, T., Perturbation theory for linear operators (1966), Berlin: Springer-Verlag, Berlin · Zbl 0148.12601 · doi:10.1007/978-3-642-53393-8
[13] Ko, E.; Lee, JE, On complex symmetric Toeplitz operators, J. Math. Anal. Appl., 434, 20-34 (2016) · Zbl 1347.47019 · doi:10.1016/j.jmaa.2015.09.004
[14] Ko, E.; Lee, JE; Lee, J., Conjugations and complex symmetric block Toeplitz operators on the weighted Hardy space, Rev. Real Acad. Cienc. Exactas Fis. Nat. A: Mat., 116, 1, 1-5 (2022) · Zbl 07425414
[15] Kochan, D.; Krejčiřík, D.; Novák, R.; Siegl, P., The Pauli equation with complex boundary conditions, J. Phys. A: Math. Theor., 45 (2012) · Zbl 1263.81166 · doi:10.1088/1751-8113/45/44/444019
[16] Krejčiřík, D., Siegl, P.: Elements of spectral theory without the spectral theorem, In Non-selfadjoint operators in quantum physics: Mathematical aspects (432 pages), F. Bagarello, J.-P. Gazeau, F. H. Szafraniec, and M. Znojil, (Eds.), Wiley-Interscience, (2015) · Zbl 1350.81012
[17] Krejčiřík, D.; Siegl, P.; Tater, M.; Viola, J., Pseudospectra in non-Hermitian quantum mechanics, J. Math. Phys., 56 (2015) · Zbl 1328.81116 · doi:10.1063/1.4934378
[18] Prodan, E.; Garcia, SR; Putinar, M., Norm estimates of complex symmetric operators applied to quantum systems, J. Phys. A: Math. Gen., 39, 389-400 (2006) · Zbl 1088.81045 · doi:10.1088/0305-4470/39/2/009
[19] Sachs, RG, The physics of time reversal (1987), Chicago: University of Chicago Press, Chicago
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.