×

Optimal matroid bases with intersection constraints: valuated matroids, M-convex functions, and their applications. (English) Zbl 07636432

Chen, Jianer (ed.) et al., Theory and applications of models of computation. 16th international conference, TAMC 2020, Changsha, China, October 18–20, 2020. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 12337, 156-167 (2020).
Summary: For two matroids \(M_1\) and \(M_2\) with the same ground set \(V\) and two cost functions \(w_1\) and \(w_2\) on \(2^V\), we consider the problem of finding bases \(X_1\) of \(M_1\) and \(X_2\) of \(M_2\) minimizing \(w_1(X_1)+w_2(X_2)\) subject to a certain cardinality constraint on their intersection \(X_1 \cap X_2\). Lendl, Peis, and Timmermans (2019) discussed modular cost functions: They reduced the problem to weighted matroid intersection for the case where the cardinality constraint is \(|X_1 \cap X_2|\le k\) or \(|X_1 \cap X_2|\ge k\); and designed a new primal-dual algorithm for the case where \(|X_1 \cap X_2|=k\). The aim of this paper is to generalize the problems to have nonlinear convex cost functions, and to comprehend them from the viewpoint of discrete convex analysis. We prove that each generalized problem can be solved via valuated independent assignment, valuated matroid intersection, or M-convex submodular flow, to offer a comprehensive understanding of weighted matroid intersection with intersection constraints. We also show the NP-hardness of some variants of these problems, which clarifies the coverage of discrete convex analysis for those problems. Finally, we present applications of our generalized problems in matroid congestion games and combinatorial optimization problems with interaction costs.
For the entire collection see [Zbl 1502.68022].

MSC:

68Qxx Theory of computing

References:

[1] Ackermann, H.; Röglin, H.; Vöcking, B., On the impact of combinatorial structure on congestion games, J. ACM, 55, 6, 25:1-25:22, 2008 · Zbl 1325.91010 · doi:10.1145/1455248.1455249
[2] Dress, AWM; Wenzel, W., Valuated matroids: a new look at the greedy algorithm, Appl. Math. Lett., 3, 2, 33-35, 1990 · Zbl 0701.05014 · doi:10.1016/0893-9659(90)90009-Z
[3] Dress, AWM; Wenzel, W., Valuated matroids, Adv. Math., 93, 214-250, 1992 · Zbl 0754.05027 · doi:10.1016/0001-8708(92)90028-J
[4] Edmonds, J.; Jünger, M.; Reinelt, G.; Rinaldi, G., Submodular functions, matroids, and certain polyhedra, Combinatorial Optimization — Eureka, You Shrink!, 11-26, 2003, Heidelberg: Springer, Heidelberg · Zbl 1024.90054 · doi:10.1007/3-540-36478-1_2
[5] Frank, A., A weighted matroid intersection algorithm, J. Algorithms, 2, 328-336, 1981 · Zbl 0484.05025 · doi:10.1016/0196-6774(81)90032-8
[6] Harks, T.; Klimm, M.; Peis, B., Sensitivity analysis for convex separable optimization over integral polymatroids, SIAM J. Optim., 28, 2222-2245, 2018 · Zbl 1403.90571 · doi:10.1137/16M1107450
[7] Hradovich, M.; Kasperski, A.; Zieliński, P., The recoverable robust spanning tree problem with interval costs is polynomialy solvable, Optim. Lett., 11, 1, 17-30, 2016 · Zbl 1373.90086 · doi:10.1007/s11590-016-1057-x
[8] Lendl, S.; Ćustić, A.; Punnen, AP, Combinatorial optimization with interaction costs: complexity and solvable cases, Discrete Optim., 33, 101-117, 2019 · Zbl 1474.90381 · doi:10.1016/j.disopt.2019.03.004
[9] Lendl, S., Peis, B., Timmermans, V.: Matroid bases with cardinality constraints on the intersection (2019). arXiv:1907.04741v1
[10] Monderer, D.; Shapley, LS, Potential games, Games Econ. Behav., 14, 124-143, 1996 · Zbl 0862.90137 · doi:10.1006/game.1996.0044
[11] Murota, K., Convexity and Steinitz’s exchange property, Adv. Math., 124, 272-311, 1996 · Zbl 0867.90092 · doi:10.1006/aima.1996.0084
[12] Murota, K., Valuated matroid intersection, I: optimality criteria, SIAM J. Discrete Math., 9, 545-561, 1996 · Zbl 0868.90132 · doi:10.1137/S0895480195279994
[13] Murota, K., Valuated matroid intersection, II: algorithms, SIAM J. Discrete Math., 9, 562-576, 1996 · Zbl 0868.90133 · doi:10.1137/S0895480195280009
[14] Vygen, J., Discrete convex analysis, Math. Intell., 26, 3, 74-76, 2004 · doi:10.1007/BF02986756
[15] Murota, K., Submodular flow problem with a nonseparable cost function, Combinatorica, 19, 87-109, 1999 · Zbl 0947.90119 · doi:10.1007/s004930050047
[16] Murota, K., Matrices and Matroids for Systems Analysis, 2000, Heidelberg: Springer, Heidelberg · Zbl 0948.05001
[17] Murota, K., Discrete Convex Analysis, 2003, Philadelphia: SIAM, Philadelphia · Zbl 1029.90055 · doi:10.1137/1.9780898718508
[18] Murota, K.; Cook, W.; Lovász, L.; Vygen, J., Recent developments in discrete convex analysis, Research Trends in Combinatorial Optimization, 219-260, 2009, Heidelberg: Springer, Heidelberg · Zbl 1359.05020 · doi:10.1007/978-3-540-76796-1_11
[19] Murota, K., Discrete convex analysis: a tool for economics and game theory, J. Mech. Inst. Des., 1, 1, 151-273, 2016
[20] Murota, K.; Shioura, A., M-convex function on generalized polymatroid, Math. Oper. Res., 24, 1, 95-105, 1999 · Zbl 0977.90044 · doi:10.1287/moor.24.1.95
[21] Rosenthal, RW, A class of games possessing pure-strategy Nash equilibria, Int. J. Game Theory, 2, 65-67, 1973 · Zbl 0259.90059 · doi:10.1007/BF01737559
[22] Takazawa, K., Generalizations of weighted matroid congestion games: pure Nash equilibrium, sensitivity analysis, and discrete convex function, J. Comb. Optim., 38, 1043-1065, 2019 · Zbl 1430.91015 · doi:10.1007/s10878-019-00435-9
[23] Werneck, RFF; Setubal, JC, Finding minimum congestion spanning trees, ACM J. Exp. Algorithmics, 5, 11:1-11:22, 2000 · Zbl 1066.05050 · doi:10.1145/351827.384253
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.