×

On two group functors extending Schur multipliers. (English) Zbl 07628936

Summary: Liedtke has introduced group functors \(K\) and \(\tilde{K}\), which are used in the context of describing certain invariants for complex algebraic surfaces. He proved that these functors are connected to the theory of central extensions and Schur multipliers. In this work, we relate \(K\) and \(\tilde{K}\) to a group functor \(\tau\) arising in the construction of the non-abelian exterior square of a group. In contrast to \(\tilde{K}\), there exist efficient algorithms for constructing \(\tau \), especially for polycyclic groups. Supported by computations with the computer algebra system GAP, we investigate when \(K(G,3)\) is a quotient of \(\tau(G)\), and when \(\tau(G)\) and \(\tilde{K}(G,3)\) are isomorphic.

MSC:

20J06 Cohomology of groups
14J29 Surfaces of general type

Software:

GAP

References:

[1] Boston, N., Embedding 2-groups in groups generated by involutions, J. Algebra, 300, 73-76 (2006) · Zbl 1102.12002 · doi:10.1016/j.jalgebra.2006.01.018
[2] Brown, R.; Johnson, D. L.; Robertson, E. F., Some computations of nonabelian tensor products of groups, J. Algebra, 111, 177-202 (1987) · Zbl 0626.20038 · doi:10.1016/0021-8693(87)90248-1
[3] Brown, R.; Loday, J.-L., Van Kampen theorems for diagrams of spaces, Topology, 26, 311-335 (1987) · Zbl 0622.55009 · doi:10.1016/0040-9383(87)90004-8
[4] Conway, J. H.; Dietrich, H.; O’Brien, E. A., Counting groups: Gnus, moas and other exotica, Math. Intelligencer, 30, 6-15 (2008) · Zbl 1213.05011 · doi:10.1007/BF02985731
[5] Dietrich, H.; Eick, B., On the Groups of cube- free order, J. Algebra, 292, 122-137 (2005) · Zbl 1112.20002 · doi:10.1016/j.jalgebra.2004.12.001
[6] Eick, B.; Nickel, W., Computing the Schur multiplicator and the nonabelian tensor square of a polycyclic group, J. Algebra, 320, 927-944 (2008) · Zbl 1163.20022 · doi:10.1016/j.jalgebra.2008.02.041
[7] Ellis, G., Tensor products and q-crossed modules, J. Lond. Math. Soc, 51, 243-258 (1995) · Zbl 0829.20073 · doi:10.1112/jlms/51.2.243
[8] The GAP Group. (2020). GAP—Groups, algorithms, and programming. Available at: gap-system.org
[9] Holt, D. F.; Eick, B.; O’Brien, E. A., Handbook of Computational Group Theory. Discrete Mathematics and Its Applications (2005), Boca Raton, FL: Chapman & Hall/CRC, Boca Raton, FL · Zbl 1091.20001
[10] Huppert, B., Endliche Gruppen I (1967), Berlin: Springer, Berlin · Zbl 0217.07201
[11] Karpilovsky, G., The Schur Multiplier (1987), Oxford: Clarendon Press, Oxford · Zbl 0619.20001 · doi:10.1093/notesj/34.1.120
[12] Liedtke, C., Natural central extensions of groups, Groups Geom. Dyn., 2, 245-261 (2008) · Zbl 1190.20020
[13] Liedtke, C., Fundamental groups of Galois closures of generic projections, Trans. Amer. Math. Soc., 362, 2167-2188 (2010) · Zbl 1198.14017 · doi:10.1090/S0002-9947-09-04941-1
[14] Malle, G.; Matzat, B. H., Inverse Galois Theory (1999), Springer Monographs in Mathematics, Berlin, Heidelberg: Springer-Verlag, Springer Monographs in Mathematics, Berlin, Heidelberg · Zbl 0940.12001
[15] Moravec, P., Unramified Brauer groups of finite and infinite groups, Amer. J. Math, 134, 1679-1704 (2012) · Zbl 1346.20072 · doi:10.1353/ajm.2012.0046
[16] Robinson, D. J. S., A Course in the Theory of Groups (1982), Berlin: Springer, Berlin · Zbl 0483.20001
[17] Rocco, N. R., On a construction related to the nonabelian tensor square of a group, Bol. Soc. Bras. Mat. (N.S, 22, 63-79 (1991) · Zbl 0791.20020 · doi:10.1007/BF01244898
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.