×

Saturated Kripke structures as Vietoris coalgebras. (English) Zbl 07628068

Hansen, Helle Hvid (ed.) et al., Coalgebraic methods in computer science. 16th IFIP WG 1.3 international workshop, CMCS 2022, colocated with ETAPS 2022, Munich, Germany, April 2–3, 2022. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 13225, 88-109 (2022).
Summary: We show that the category of coalgebras for the compact Vietoris endofunctor \(\mathbb{V}\) on the category Top of topological spaces and continuous mappings is isomorphic to the category of all modally saturated Kripke structures. Extending a result of Bezhanishvili, Fontaine and Venema [4], we also show that Vietoris subcoalgebras as well as bisimulations admit topological closure and that the category of Vietoris coalgebras has a terminal object.
For the entire collection see [Zbl 1499.68017].

MSC:

68Q65 Abstract data types; algebraic specification

References:

[1] Balan, A.; Kurz, A.; Corradini, A.; Klin, B.; Cîrstea, C., Finitary functors: from Set to Preord and Poset, Algebra and Coalgebra in Computer Science, 85-99 (2011), Heidelberg: Springer, Heidelberg · Zbl 1343.18001 · doi:10.1007/978-3-642-22944-2_7
[2] Barr, M., Terminal coalgebras in well-founded set theory, Theor. Comput. Sci., 114, 2, 299-315 (1993) · Zbl 0779.18004 · doi:10.1016/0304-3975(93)90076-6
[3] Barr, M., Additions and corrections to ‘terminal coalgebras in well-founded set theory’, Theor. Comput. Sci., 124, 1, 189-192 (1994) · Zbl 0788.18001 · doi:10.1016/0304-3975(94)90060-4
[4] Bezhanishvili, N.; Fontaine, G.; Venema, Y., Vietoris bisimulations, J. Logic Comput., 20, 5, 1017-1040 (2010) · Zbl 1266.03029 · doi:10.1093/logcom/exn091
[5] Blackburn, P., Rijke, M.D., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (2001). doi:10.1017/CBO9781107050884 · Zbl 0988.03006
[6] Doberkat, EE, Stochastic Coalgebraic Logic (2009), Heidelberg: Springer, Heidelberg · Zbl 1179.03023 · doi:10.1007/978-3-642-02995-0
[7] Fine, K.: Some connections between elementary and modal logic. In: Blackburn, P., Van Benthem, J., Wolter, F. (eds.) Proceedings of the Third Scandinavian Logic Symposium, vol. 3, pp. 15-31. North-Holland, Amsterdam (1973). doi:10.1016/S0049-237X(08)70723-7 · Zbl 0316.02021
[8] Goldblatt, R., Final coalgebras and the Hennessy-Milner property, Ann. Pure Appl. Logic, 138, 77-93 (2006) · Zbl 1099.03019 · doi:10.1016/j.apal.2005.06.006
[9] Goranko, V., Otto, M.: 5 model theory of modal logic. In: Blackburn, P., Van Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic, Studies in Logic and Practical Reasoning, vol. 3, pp. 249-329. Elsevier (2007). doi:10.1016/S1570-2464(07)80008-5 · Zbl 1114.03001
[10] Gumm, H.P.: Elements of the general theory of coalgebras. In: LUATCS 1999. Rand Afrikaans University, Johannesburg, South Africa (1999). https://www.mathematik.uni-marburg.de/ gumm/Papers/Luatcs.pdf
[11] Gumm, HP; Schröder, T., Coalgebras of bounded type, Math. Struct. Comput. Sci., 12, 5, 565-578 (2002) · Zbl 1011.08009 · doi:10.1017/S0960129501003590
[12] Hennessy, M.; Milner, R.; de Bakker, J.; van Leeuwen, J., On observing nondeterminism and concurrency, Automata, Languages and Programming, 299-309 (1980), Heidelberg: Springer, Heidelberg · Zbl 0441.68018 · doi:10.1007/3-540-10003-2_79
[13] Hofmann, D.; Neves, R.; Nora, P., Limits in categories of Vietoris coalgebras, Math. Struct. Comput. Sci., 29, 4, 552-587 (2019) · Zbl 1417.68108 · doi:10.1017/S0960129518000269
[14] Hollenberg, M.: Hennessy-Milner classes and process algebra. In: Ponse, A., de Rijke M., Venema, Y. (eds.) Modal Logic and Process Algebra. CSLI Lecture Notes, vol. 53, pp. 107-129. CSLI Publications (1995)
[15] Jacobs, B.: Introduction to Coalgebra: Towards Mathematics of States and Observation. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (2016). doi:10.1017/CBO9781316823187.007
[16] Kupke, C., Kurz, A., Venema, Y.: Stone coalgebras. Theor. Comput. Sci. 327(1), 109-134 (2004). doi:10.1016/j.tcs.2004.07.023. Selected Papers of CMCS ’03 · Zbl 1075.68053
[17] Moss, L.S., Viglizzo, I.D.: Final coalgebras for functors on measurable spaces. Inf. Comput. 204(4), 610-636 (2006). doi:10.1016/j.ic.2005.04.006. Seventh Workshop on Coalgebraic Methods in Computer Science 2004 · Zbl 1103.68084
[18] Munkres, J., Topology (2000), Hoboken: Prentice Hall, Hoboken · Zbl 0951.54001
[19] Rutten, J.: Universal coalgebra: a theory of systems. Technical report, R 9652, CWI, Amsterdam (1996). https://ir.cwi.nl/pub/4802
[20] Rutten, J., Universal coalgebra: a theory of systems, Theoret. Comput. Sci., 249, 3-80 (2000) · Zbl 0951.68038 · doi:10.1016/S0304-3975(00)00056-6
[21] Vietoris, L., Bereiche zweiter Ordnung, Monatshefte für Mathematik und Physik, 32, 1, 258-280 (1922) · JFM 48.0205.02 · doi:10.1007/BF01696886
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.