×

Krichever-Novikov type algebras. A general review and the genus zero case. (English) Zbl 07619843

Hervik, Sigbjørn (ed.) et al., Geometry, Lie theory and applications. Proceedings of the Abel symposium 2019, Ålesund, Norway June 24–28, 2019. Cham: Springer. Abel Symp. 16, 279-330 (2022).
The survey is a nice summary of the author’s earlier results on Krichever-Novikov type algebras. These algebras are generalizations of the classical algebras in conformal field theory, like the Witt and Virasoro algebra, affine Lie algebras, superalgebra, where the geometric setting is the genus zero Riemann surface, with two points with poles \((\{0\}\) and \(\{\infty\})\). These algebras are graded. The generalized KN type algebras are those where the set of points \(A\) where poles are allowed is arbitrary finite number. These algebras are not graded. Krichever-Novikov introduced a weaker concept of grading in higher genus case. This weaker concept, called almost grading, also works in the genus zero case with more than two points where poles are allowed. The almost grading is introduced by a splitting of the set \(A\) of allowed poles into two nonempty disjoint sets \(I \cup Q\). With a given almost grading one gets a triangular decomposition of these algebras, highest weight representations and central extensions.
In the second part of the survey the author gives the construction of generalized KN algebras for genus zero multipoint case. Such algebras include vector field algebras, function algebras, differential operator algebra, current algebras and Lie superalgebras. With the help of a given almost grading induced by the splitting \(A=I \cup Q\), the author describes the space of local cohomology with trivial coefficients, which describes local central extensions. In every case he computes the cohomology and describes central extensions. An interesting special case is the three-point genus 0 case, which has more applications. The poles are \(A=\{0, 1, \infty\}\). As an example, he gives the universal central extension of the three-point \(sl(2, \mathbb C)\) current algebra. Consider the vector space of meromorphic forms of arbitrary weights. It is associative, and commutative graded algebra. One can also define a Lie algebra structure and superalgebra on it. At the end central extensions of the considered KN-type algebras are calculated.
For the entire collection see [Zbl 1479.53006].

MSC:

17B66 Lie algebras of vector fields and related (super) algebras
17B56 Cohomology of Lie (super)algebras
17B65 Infinite-dimensional Lie (super)algebras
17B68 Virasoro and related algebras
30F30 Differentials on Riemann surfaces
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
Full Text: DOI

References:

[1] A. Anzaldo-Meneses, Krichever-Novikov algebras on Riemann surfaces of genus zero and one with \(N\) punctures. J. Math. Phys. 33(12), 4155-4163 (1992) · Zbl 0769.30033 · doi:10.1063/1.529814
[2] E. Arbarello, C. De Concini, V.G. Kac, C. Procesi, Moduli spaces of curves and representation theory. Commun. Math. Phys. 117(1), 1-36 (1988). https://projecteuclid.org/euclid.cmp/1104161592 · Zbl 0647.17010 · doi:10.1007/BF01228409
[3] M.F. Atiyah, Riemann surfaces and spin structures. Ann. Sci. École Norm. Sup. (4) 4, 47-62 (1971) · Zbl 0212.56402
[4] A.A. Belavin, A.M. Polyakov, A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241, 333-380 (1084) · Zbl 0661.17013
[5] G. Benkart, P. Terwilliger, The universal central extension of the three-point \(\mathfrak{sl}_2\) loop algebra. Proc. Am. Math. Soc. 135(6), 1659-1668 (2007) · Zbl 1153.17008
[6] L. Bonora, M. Martellini, M. Rinaldi, L. Russo, Neveu-Schwarz- and Ramond-type superalgebras on genus-\(g\) Riemann surfaces. Phys. Lett. B 206(3), 444-450 (1988). https://doi.org/10.1016/0370-2693(88)91607-3 · doi:10.1016/0370-2693(88)91607-3
[7] M.R. Bremner, Structure of the Lie algebra of polynomial vector fields on the Riemann sphere with three punctures. J. Math. Phys. 32, 1607-1608 (1991) · Zbl 0748.17019 · doi:10.1063/1.529499
[8] M.R. Bremner, Generalized affine Kac-Moody Lie algebras over localizations of the polynomial ring in one variables. Can. Math. Bull. 37(1), 21-28 (1994) · Zbl 0807.17019 · doi:10.4153/CMB-1994-004-8
[9] M.R. Bremner, Four-point affine Lie algebras. Proc. Am. Math. Soc. 123, 1981-1989 (1995) · Zbl 0833.17023 · doi:10.1090/S0002-9939-1995-1249871-8
[10] M.R. Bremner, On a Lie algebra of vector fields on a complex torus. J. Math. Phys. 31, 2033-2034 (1990) · Zbl 0716.17026 · doi:10.1063/1.528652
[11] M.R. Bremner, Universal central extensions of elliptic affine Lie algebras. J. Math. Phys. 35(12), 6685-6692 (1994) · Zbl 0839.17017 · doi:10.1063/1.530700
[12] P. Bryant, Graded Riemann surfaces and Krichever-Novikov algebras. Lett. Math. Phys. 19(2), 97-108 (1990). https://doi.org/10.1007/BF01045879 · Zbl 0687.53075 · doi:10.1007/BF01045879
[13] A. Bueno, B. Cox, V. Futorny, Free field realizations of the elliptic affine Lie algebra \(\mathfrak{sl}(2,\mathbf{R})\oplus (\Omega_R/d\text{R})\). J. Geom. Phys. 59(9), 1258-1270 (2009) · Zbl 1217.17015
[14] B. Cox, Realizations of the four point affine Lie algebra \(\mathfrak{sl}(2,R)\oplus (\Omega_R/dR)\). Pac. J. Math. 234(2), 261-289 (2008) · Zbl 1151.81046
[15] B. Cox, X. Guo, R. Lu, K. Zhao, \(n\)-point Virasoro algebras and their modules of densities. Commun. Contemp. Math. 16(3), 1350047 (2014) · Zbl 1355.17029
[16] B. Cox, E. Jurisich, Realizations of the three-point Lie algebra \(\mathfrak{sl}(2,{\mathcal R})\bigoplus (\Omega_{{\mathcal R}}/d{\mathcal R})\). Pac. J. Math. 270(1), 27-48 (2014) · Zbl 1355.17030
[17] B. Cox, E. Jurisich, R. Martins, The 3-point Virasoro algebra and its action on Fock space (2015). arXiv: 1502.04102v1 · Zbl 1338.81226
[18] R. Dick, Krichever-Novikov-like bases on punctured Riemann surfaces. Lett. Math. Phys. 18, 255-265 (1989) · Zbl 0684.30036 · doi:10.1007/BF00399975
[19] A. Fialowski, M. Schlichenmaier, Global deformations of the Witt algebra of Krichever-Novikov type. Commun. Contemp. Math. 5(6), 921-945 (2003). https://doi.org/10.1142/S0219199703001208 · Zbl 1052.17011 · doi:10.1142/S0219199703001208
[20] A. Fialowski, M. Schlichenmaier, Global geometric deformations of current algebras as Krichever-Novikov type algebras. Commun. Math. Phys. 260(3), 579-612 (2005). https://doi.org/10.1007/s00220-005-1423-5 · Zbl 1136.17307 · doi:10.1007/s00220-005-1423-5
[21] A. Fialowski, M. Schlichenmaier, Global Geometric Deformations of the Virasoro algebra, current and affine algebras by Krichever-Novikov type algebras. Int. J. Theor. Phys. 46(11), 2708-2724 (2007) · Zbl 1127.81021 · doi:10.1007/s10773-007-9383-5
[22] L. Guieu, C. Roger, L’algèbre et le groupe de Virasoro (Les Publications CRM, Montreal, 2007). Aspects géométriques et algébriques, généralisations. [Geometric and algebraic aspects, generalizations], With an appendix by Vlad Sergiescu · Zbl 1151.17011
[23] R.C. Gunning, Lectures on Riemann Surfaces. Princeton Mathematical Notes (Princeton University Press, Princeton, 1966) · Zbl 0175.36801
[24] B. Hartwig, P. Terwilliger, The tetrahedron algebra, the Onsager algebra, and the \(\mathfrak{sl}_2\) loop algebra. J. Algebra 308(2), 840-863 (2007) · Zbl 1163.17026
[25] N.S. Hawley, M. Schiffer, Half-order differentials on Riemann surfaces. Acta Math. 115, 199-236 (1966). https://doi.org/10.1007/BF02392208 · Zbl 0136.06701 · doi:10.1007/BF02392208
[26] T. Ito, P. Terwilliger, Finite-dimensional irreducible modules for the three-point \(\mathfrak s\mathfrak l_2\) loop algebra. Commun. Algebra 36(12), 4557-4598 (2008) · Zbl 1207.17030
[27] E. Jurisich, R. Martins, Determination of the 2- cocycles for the three-point Witt algebra. arXiv:1410.5479.
[28] V.G. Kac, Simple irreducible graded lie algebras of finite growth. (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 32, 1323-1367 (1968) · Zbl 0222.17007
[29] V.G. Kac, Infinite-Dimensional Lie Algebras, 3rd edn. (Cambridge University Press, Cambridge, 1990). https://doi.org/10.1017/CBO9780511626234 · Zbl 0716.17022 · doi:10.1017/CBO9780511626234
[30] Ch. Kassel, Kähler differentials and coverings of complex simple Lie algebras extended over a commutative algebra, in Proceedings of the Luminy Conference on Algebraic \(K\)-Theory (Luminy, 1983), vol. 34 (1984), pp. 265-275 · Zbl 0549.17009
[31] C. Kassel, J.-L. Loday, Extensions centrales d’algèbres de Lie. Ann. Inst. Fourier (Grenoble). 32(4), 119-142 (1982, 1983) · Zbl 0485.17006
[32] M. Kreusch, Extensions of superalgebras of Krichever-Novikov type. Lett. Math. Phys. 103(11), 1171-1189 (2013). https://doi.org/10.1007/s11005-013-0628-3 · Zbl 1366.17023 · doi:10.1007/s11005-013-0628-3
[33] I.M. Krichever, S.P. Novikov, Algebras of Virasoro type, Riemann surfaces and strings in Minkowski space. Funktsional. Anal. i Prilozhen. 21(4), 47-61 (1987) · Zbl 0659.17012
[34] I.M. Krichever, S.P. Novikov, Algebras of Virasoro type, the energy-momentum tensor, and operator expansions on Riemann surfaces. Funktsional. Anal. i Prilozhen. 23(1), 24-40 (1989). https://doi.org/10.1007/BF01078570 · Zbl 0684.17012 · doi:10.1007/BF01078570
[35] S. Leidwanger, S. Morier-Genoud, Superalgebras associated to Riemann surfaces: Jordan algebras of Krichever-Novikov type. Int. Math. Res. Not. IMRN 19, 4449-4474 (2012). https://doi.org/10.1093/imrn/rnr196 · Zbl 1315.17024 · doi:10.1093/imrn/rnr196
[36] R.V. Moody, Euclidean Lie algebras. Can. J. Math. 21, 1432-1454 (1969). https://doi.org/10.4153/CJM-1969-158-2 · Zbl 0194.34402 · doi:10.4153/CJM-1969-158-2
[37] V. Ovsienko, Lie antialgebras: prémices. J. Algebra 325, 216-247 (2011). https://doi.org/10.1016/j.jalgebra.2010.10.003 · Zbl 1247.17006 · doi:10.1016/j.jalgebra.2010.10.003
[38] A. Ruffing, Th. Deck, M. Schlichenmaier, String Branchings on complex tori and algebraic representations of generalized Krichever-Novikov algebras. Lett. Math. Phys. 26, 23-32 (1992) · Zbl 0774.17027 · doi:10.1007/BF00420515
[39] V.A. Sadov, Bases on multipunctured Riemann surfaces and interacting strings amplitudes. Commun. Math. Phys. 136(3), 585-597 (1991). http://projecteuclid.org/euclid.cmp/1104202438 · Zbl 0725.30033 · doi:10.1007/BF02099075
[40] M. Schlichenmaier, Krichever-Novikov algebras for more than two points. Lett. Math. Phys. 19(2), 151-165 (1990). https://doi.org/10.1007/BF01045886 · Zbl 0691.30037 · doi:10.1007/BF01045886
[41] M. Schlichenmaier, Krichever-Novikov algebras for more than two points: explicit generators. Lett. Math. Phys. 19(4), 327-336 (1990). https://doi.org/10.1007/BF00429952 · Zbl 0703.30038 · doi:10.1007/BF00429952
[42] M. Schlichenmaier, Central extensions and semi-infinite wedge representations of Krichever-Novikov algebras for more than two points. Lett. Math. Phys. 20(1), 33-46 (1990). https://doi.org/10.1007/BF00417227 · Zbl 0703.30039 · doi:10.1007/BF00417227
[43] M. Schlichenmaier, Verallgemeinerte Krichever-Novikov Algebren und deren Darstellungen. Ph.D. Thesis, University of Mannheim (1990) · Zbl 0721.30031
[44] M. Schlichenmaier, Degenerations of generalized Krichever-Novikov algebras on tori. J. Math. Phys. 34(8), 3809-3824 (1993). https://doi.org/10.1063/1.530008 · Zbl 0806.17024 · doi:10.1063/1.530008
[45] M. Schlichenmaier, Zwei Anwendungen algebraisch-geometrischer Methoden in der Theoretischen Physik: Berezin-Toeplitz-quantisierung und globale Algebren der zweidimensionalen Konformen Feldtheorie. Habilitation thesis, University of Mannheim (1996)
[46] M. Schlichenmaier, Higher genus affine algebras of Krichever-Novikov type. Mosc. Math. J. 3(4), 1395-1427 (2003) · Zbl 1115.17010 · doi:10.17323/1609-4514-2003-3-4-1395-1427
[47] M. Schlichenmaier, Local cocycles and central extensions for multipoint algebras of Krichever-Novikov type. J. Reine Angew. Math. 559, 53-94 (2003). https://doi.org/10.1515/crll.2003.052 · Zbl 1124.17305
[48] M. Schlichenmaier, in An Introduction to Riemann Surfaces, Algebraic Curves and Moduli spaces, 2nd edn. Theoretical and Mathematical Physics (Springer, Berlin, 2007). With an introduction by Ian McArthur · Zbl 1153.14023
[49] M. Schlichenmaier, Higher genus affine Lie algebras of Krichever-Novikov type, in Proceedings of the International Conference on Difference Equations. Special Functions, and Applications (World-Scientific, Munich, 2007), pp. 589-599 · Zbl 1148.17015
[50] M. Schlichenmaier, Lie superalgebras of Krichever-Novikov type and their central extensions. Anal. Math. Phys. 3(3), 235-261 (2013). https://doi.org/10.1007/s13324-013-0056-7 · Zbl 1376.17029 · doi:10.1007/s13324-013-0056-7
[51] M. Schlichenmaier, in Krichever-Novikov Type Algebras. De Gruyter Studies in Mathematics, vol. 53 (De Gruyter, Berlin, 2014). https://doi.org/10.1515/9783110279641. Theory and applications · Zbl 1347.17001
[52] M. Schlichenmaier, Krichever-Novikov type algebras. An introduction, in Lie Algebras, Lie superalgebras, Vertex Algebras and Related Topics. Proc. Sympos. Pure Math., vol. 92 (Amer. Math. Soc., Providence, 2016), pp. 181-220
[53] M. Schlichenmaier, \(N\)-point Virasoro algebras are multipoint Krichever-Novikov-type algebras. Commun. Algebra 45(2), 776-821 (2017). https://doi.org/10.1080/00927872.2016.1175464 · Zbl 1406.17029 · doi:10.1080/00927872.2016.1175464
[54] O.K. Sheinman, Elliptic affine Lie algebras. Funktsional. Anal. i Prilozhen. 24(3), 51-61, 96 (1990). https://doi.org/10.1007/BF01077962 · Zbl 0715.17023
[55] O.K. Sheinman, Highest weight modules of some quasigraded Lie algebras on elliptic curves. Funktsional. Anal. i Prilozhen. 26(3), 65-71 (1992). https://doi.org/10.1007/BF01075634 · Zbl 0820.17037 · doi:10.1007/BF01075634
[56] O.K. Sheinman, Affine Lie algebras on Riemann surfaces. Funktsional. Anal. i Prilozhen. 27(4), 54-62, 96 (1993). https://doi.org/10.1007/BF01078844 · Zbl 0820.17036
[57] O.K. Sheinman, Highest-weight modules for affine Lie algebras on Riemann surfaces. Funktsional. Anal. i Prilozhen. 29(1), 56-71, 96 (1995). https://doi.org/10.1007/BF01077040 · Zbl 0848.17023
[58] O.K. Sheinman, in Current Algebras on Riemann Surfaces. De Gruyter Expositions in Mathematics, vol. 58. (Walter de Gruyter GmbH & Co. KG, Berlin, 2012). https://doi.org/10.1515/9783110264524. New results and applications · Zbl 1258.81002
[59] S. Skryabin, Degree one cohomology for the Lie algebra of derivations. Lobachevskii J. Math. 14, 69-107 (2004) · Zbl 1044.17012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.