×

Entries of the inverses of large positive definite Toeplitz matrices. (English) Zbl 07614111

Summary: This is an expository paper embarking on the asymptotic behavior of the entries of the inverses of positive definite symmetric Toeplitz matrices as the matrix dimension goes to infinity. We consider the behavior of the entries in neighborhoods of the four corners as well as the density of the distribution of the entries over all of the inverse matrix.

MSC:

15B05 Toeplitz, Cauchy, and related matrices
47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
34B27 Green’s functions for ordinary differential equations
60G50 Sums of independent random variables; random walks

References:

[1] A. Böttcher, The constants in the asymptotic formulas by Rambour and Seghier for inverses of Toeplitz matrices, Integral Equations Operator Theory, 50 (2004), 43-55. · Zbl 1070.47015
[2] A.Böttcher, The Duduchava-Roch formula, Operator Theory: Adv. and Appl., 258 (2017), 1-19. · Zbl 1381.47020
[3] A. Böttcher, L. Fukshansky, S.R. Garcia and H. Maharaj, Toeplitz determinants with perturbations in the corners, J. Funct. Anal., 268 (2015), 171-193. · Zbl 1300.15010
[4] A. Böttcher and B. Silbermann, Introduction to Large Truncated Toeplitz Matrices, Universitext, Springer-Verlag, New York, 1999. · Zbl 0916.15012
[5] A. Böttcher and H. Widom, From Toeplitz eigenvalues through Green’s kernels to higher-order Wirtinger-Sobolev inequalities, Operator Theory: Adv. and Appl., 171 (2006), 73-87. · Zbl 1118.47016
[6] R. Courant, K. Friedrichs and H. Lewy, Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann., 100 (1928), 32-74. · JFM 54.0486.01
[7] P. Deift, A. Its and I. Krasovsky, Toeplitz matrices and Toeplitz determinants under the impetus of the Ising model: some history and some recent results, Comm. Pure Appl. Math., 66 (2013), 1360-1438. · Zbl 1292.47016
[8] R.V. Duduchava, On discrete Wiener-Hopf equations, Trudy Tbilis. Matem. Inst., 50 (1975), 42-59 [in Russian]. · Zbl 0412.47015
[9] I. Gohberg and I.A. Feldman, Convolution Equations and Projection Methods for their Solution, Amer. Math. Soc., Providence, RI, 1974 [Russian original: Nauka, Moscow, 1971].
[10] I. Gohberg and A.A. Sementsul, The inversion of finite Toeplitz matrices and their continual analogues, Matem. Issled., 7 (1972), 201-223 [in Russian]. · Zbl 0288.15004
[11] G. Heinig and K. Rost, Algebraic Methods for Toeplitz-like Matrices and Operators, Birkhäuser Verlag, Basel, 1984. · Zbl 0549.15013
[12] S.V.Parter, On the extreme eigenvalues of truncated Toeplitz matrices, Bull. Amer. Math. Soc., 67 (1961), 191-196. · Zbl 0100.32006
[13] P. Rambour, J.-M. Rinkel and A. Seghier, Inverse asymptotique de la matrice de Toeplitz et noyau de Green, C. R. Acad. Sci. Paris, 331 (2000), 857-860. · Zbl 0965.15002
[14] P. Rambour and A. Seghier, Exact and asymptotic inverse of the Toeplitz matrix with polynomial singular symbol, C. R. Acad. Sci. Paris, 335 (2002), 705-710; Erratum in C. R. Acad. Sci. Paris, 336 (2003), 399-400. · Zbl 1012.65025
[15] P. Rambour and A. Seghier, Formulas for the inverses of Toeplitz matrices with polynomially singular symbols, Integral Equations Operator Theory, 50 (2004), 83-114. · Zbl 1069.47027
[16] P. Rambour and A. Seghier, Inverse asymptotique des matrices de Toeplitz de symbole \({(1-\cos\theta)}^\alpha f_1,- \frac{1}{2}<\alpha\leq \frac{1}{2} \), et noyaux intégraux, Bull. Sci. Math., 134 (2010), 155-188. · Zbl 1191.47046
[17] S.Roch, Das Reduktionsverfahren für Produktsummen von Toeplitzoperatoren mit stückweise stetigen Symbolen, Wiss. Z. Tech. Hochsch. Karl-Marx-Stadt, 26 (1984), 265-273. · Zbl 0577.47026
[18] B. Simon, Orthogonal Polynomials on the Unit Circle, Part 1: Classical Theory, Amer. Math. Soc. Colloq. Publ., Vol. 54, Amer. Math. Soc, Providence, RI, 2005. · Zbl 1082.42020
[19] F.L. Spitzer and C. J. Stone, A class of Toeplitz forms and their application to probability theory, Illinois J. Math., 4 (1960), 253-277. · Zbl 0124.34403
[20] G. Szegő, Beiträge zur Theorie der Toeplitzschen Formen, Parts I and II, Math. Z., 6 (1920), 167-202 and 9 (1921), 167-190. · JFM 48.0376.03
[21] G. Szegő, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., Vol. 23, Amer. Math. Soc, Providence, RI, 1939. · JFM 65.0278.03
[22] W. F. Trench, An algorithm for the inversion of finite Toeplitz matrices, J. Soc. Indust. Appl. Math., 12 (1964), 515-522. · Zbl 0131.36002
[23] H. Widom, Extreme eigenvalues of translation kernels, Trans. Amer. Math. Soc., 100 (1961), 252-262. · Zbl 0197.10903
[24] H. Widom, Asymptotic behavior of block Toeplitz matrices and determinants, II, Adv. in Math., 21 (1976), 1-29. · Zbl 0344.47016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.