×

Improved interexceedance-times-based estimator of the extremal index using truncated distribution. (English) Zbl 07613179

Summary: The extremal index is an important parameter in the characterization of extreme values of a stationary sequence. This paper presents a novel approach to estimation of the extremal index based on truncation of interexceedance times. The truncated estimator based on the maximum likelihood method is derived together with its first-order bias. The estimator is further improved using penultimate approximation to the limiting mixture distribution. In order to assess the performance of the proposed estimator, a simulation study is carried out for various stationary processes satisfying the local dependence condition \(D^{(k)}(u_n)\). An application to daily maximum temperatures at Uccle, Belgium, is also presented.

MSC:

62G32 Statistics of extreme values; tail inference
62M09 Non-Markovian processes: estimation
62N01 Censored data models
62N02 Estimation in survival analysis and censored data
62P12 Applications of statistics to environmental and related topics
Full Text: DOI

References:

[1] Ancona-Navarrete, MA; Tawn, JA, A comparison of methods for estimating the extremal index, Extremes, 3, 1, 5-38 (2000) · Zbl 0965.62044 · doi:10.1023/A:1009993419559
[2] Beirlant, J.; Goegebeur, Y.; Segers, J.; Teugels, J.; de Waal, D.; Ferro, C., Statistics of Extremes: Theory and Applications (2004), Wiley · Zbl 1070.62036 · doi:10.1002/0470012382
[3] Cai, J.J.: A nonparametric estimator of the extremal index. Available from https://arxiv.org/abs/1911.06674 (2019) (Accessed 10 Dec 2019)
[4] Casella, G., Berger, R.L.: Statistical Inference. Thomson Learning (2002)
[5] Chernick, MR; Hsing, T.; McCormick, WP, Calculating the extremal index for a class of stationary sequences, Adv. Appl. Probab., 23, 835-850 (1991) · Zbl 0741.60042 · doi:10.2307/1427679
[6] Fawcett, L.; Walshaw, D., Estimating return levels from serially dependent extremes, Environmetrics, 23, 3, 272-283 (2012) · doi:10.1002/env.2133
[7] Ferreira, M., Heuristic tools for the estimation of the extremal index: A comparison of methods, REVSTAT, 16, 1, 115-136 (2018) · Zbl 1392.62141
[8] Ferreira, M., Analysis of estimation methods for the extremal index, Electron. J. App. Stat. Anal., 11, 1, 296-306 (2018)
[9] Ferreira, H., Ferreira, M.: Estimating the extremal index through local dependence. Annales de l’Institute Henri Poincare (B) Probability and Statistics 54(2), 587-605 (2018) · Zbl 1391.60119
[10] Ferro, C.A.T., Segers, J.: Automatic declustering of extreme values via an estimator for the extremal index. Technical report 2002-025. EURANDOM, Eindhoven (2002). Available from www.eurandom.nl (Accessed 10 Mar 2022)
[11] Ferro, CAT; Segers, J., Inference for clusters of extreme values, J. R. Stat. Soc. B Met., 65, 2, 545-556 (2003) · Zbl 1065.62091 · doi:10.1111/1467-9868.00401
[12] Fukutome, S.; Liniger, MA; Süveges, M., Automatic threshold and run parameter selection: a climatology for extreme hourly precipitation in Switzerland, Theor. Appl. Climatol., 120, 3-4, 403-416 (2015) · doi:10.1007/s00704-014-1180-5
[13] Fukutome, S.; Liniger, MA; Süveges, M., Correction to: Automatic threshold and run parameter selection: a climatology for extreme hourly precipitation in Switzerland, Theor. Appl. Climatol., 137, 3-4, 3215 (2019) · doi:10.1007/s00704-019-02791-2
[14] Gomes, MI; Barnett, V.; Turkman, K., On the estimation of parameters of rare events in environmental time series, Statistics for the Environment 2: Water Related Issues, 225-241 (1993), New York: Wiley, New York
[15] Gomes, MI; Hall, A.; Miranda, MC, Subsampling techniques and the Jackknife methodology in the estimation of the extremal index, Comput. Stat. Data An., 52, 4, 2022-2041 (2008) · Zbl 1452.62336 · doi:10.1016/j.csda.2007.06.023
[16] Holešovský, J.; Fusek, M., Estimation of the extremal index using censored distributions, Extremes, 23, 2, 197-213 (2020) · Zbl 1451.62047 · doi:10.1007/s10687-020-00374-3
[17] Hsing, T., Estimating the parameters of rare events, Stoch. Proc. Appl., 37, 117-139 (1991) · Zbl 0722.62021 · doi:10.1016/0304-4149(91)90064-J
[18] Klein Tank, A.M., Wijngaard, J.B., Können, G.P., Böhm, R., Demarée, G., Gocheva, A., Mileta, M., Pashiardis, S., Hejkrlik, L., Kern-Hansen, C., Heino, R.: Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int. J. Climatol. 22, 1441-1453 (2002)
[19] Leadbetter, MR; Lindgren, G.; Rootzén, H., Extremes and Related Properties of Random Sequences and Series (1983), Springer · Zbl 0518.60021 · doi:10.1007/978-1-4612-5449-2
[20] Northrop, PJ, An efficient semiparametric maxima estimator of the extremal index, Extremes, 18, 585-603 (2015) · Zbl 1327.62325 · doi:10.1007/s10687-015-0221-5
[21] Robert, CY; Segers, J.; Ferro, CA, A sliding blocks estimator for the extremal index, Electron. J. Stat., 3, 993-1020 (2009) · Zbl 1326.60075 · doi:10.1214/08-EJS345
[22] Smith, R.L., Weissman, I.: Estimating the extremal index. J. R. Stat. Soc. Ser. B 56, 515-528 (1994) · Zbl 0796.62084
[23] Süveges, M., Likelihood estimation of the extremal index, Extremes, 10, 41-55 (2007) · Zbl 1150.62368 · doi:10.1007/s10687-007-0034-2
[24] Süveges, M.; Davison, AC, Model misspecification in peaks over threshold analysis, Ann. Appl. Stat., 4, 1, 203-221 (2010) · Zbl 1189.62086 · doi:10.1214/09-AOAS292
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.