×

A class of \((\omega,\mathbb{T})\)-periodic solutions for impulsive evolution equations of Sobolev type. (English) Zbl 07595384

Summary: In this paper, we study a new class of Sobolev type \((\omega,\mathbb{T})\)-periodic linear and semilinear impulsive evolution equations, where \(\mathbb{T}\) denotes a linear isomorphism from Banach space \(X\) to itself. We give a sufficient and necessary condition depending on the initial value, periodic boundary value and linear isomorphism to guarantee that the homogeneous linear impulsive problem has a \((\omega,\mathbb{T})\)-periodic solution. Next, we give the explicit expression of \((\omega,\mathbb{T})\)-periodic solutions for nonhomogeneous linear impulsive problem and derive two important estimations for the certain sum and integration including the Green function. Further, we show the existence and uniqueness of solutions to semilinear impulsive problem, where we remove the compactness of \(AB^{-1}\) and use the compactness of a mapping depending on the nonlinear term. Finally, examples are provided to illustrate the theoretical results.

MSC:

47J35 Nonlinear evolution equations
Full Text: DOI

References:

[1] Showalter, RE, Existence and representation theorems for a semilinear Sobolev equation in Banach space, SIAM J. Math. Anal., 3, 527-543 (1972) · Zbl 0262.34047 · doi:10.1137/0503051
[2] Travis, CC; Webb, GF, Existence and stability or partial functional differential equations, Trans. Am. Math. Soc., 200, 395-418 (1974) · Zbl 0299.35085 · doi:10.1090/S0002-9947-1974-0382808-3
[3] Showalter, RE, A nonlinear parabolic-Sobolev equation, J. Math. Anal. Appl., 50, 183-190 (1975) · Zbl 0296.35047 · doi:10.1016/0022-247X(75)90047-5
[4] Agarwal, S.; Bahuguan, D., Existence of solutions to Sobolev-type partial neutral differential equations, J. Appl. Math. Stoch. Anal., 2006, 1-10 (2006) · Zbl 1119.34060
[5] Balachandran, K.; Dauer, JP, Controllability of functional differential systems of Sobolev type in Banach spaces, Kybernetika, 34, 349-357 (1998) · Zbl 1274.93031
[6] Lightbourne, J.; Rankin, S., A partial functional differential equation of Sobolev type, J. Math. Anal. Appl., 93, 328-337 (1983) · Zbl 0519.35074 · doi:10.1016/0022-247X(83)90178-6
[7] Li, F.; Liang, J.; Xu, H., Existence of mild solutions for fractional integro differential equations of Sobolev type with nonlocal conditions, J. Math. Anal. Appl., 391, 510-525 (2012) · Zbl 1242.45009 · doi:10.1016/j.jmaa.2012.02.057
[8] Fečkan, M.; Wang, J.; Zhou, Y., Controllability of fractional functional evolution equations of Sobolev type via characteristic solution operators, J. Optim. Theory Appl., 156, 79-95 (2013) · Zbl 1263.93031 · doi:10.1007/s10957-012-0174-7
[9] Wang, J.; Fečkan, M.; Zhou, Y., Controllability of Sobolev type fractional evolution systems, Dyn. Partial Differ. Equ., 11, 71-87 (2014) · Zbl 1314.47117 · doi:10.4310/DPDE.2014.v11.n1.a4
[10] Wang, J.; Fečkan, M.; Zhou, Y., Fractional order differential switched systems with coupled nonlocal initial and impulsive conditions, Bull. Sci. Math., 141, 727-746 (2017) · Zbl 1387.34012 · doi:10.1016/j.bulsci.2017.07.007
[11] Wang, J.; Li, M.; O’Regan, D.; Fečkan, M., Robustness for linear evolution equations with non-instantaneous impulsive effects, Bull. Sci. Math., 159, 102827 (2020) · Zbl 1436.34058 · doi:10.1016/j.bulsci.2019.102827
[12] Wang, J., Ibrahim, A. G., O’Regan, D.: Topological structure of the solution set for fractional non-instantaneous impulsive evolution inclusions. J. Fixed Point Theory Appl. 20, 59 (2018) · Zbl 1398.34088
[13] Yang, D.; Wang, J.; O’Regan, D., On the orbital Hausdorff dependence of differential equations with non-instantaneous impulses, C. R. Acad. Sci. Paris Ser., I, 356, 150-171 (2018) · Zbl 1384.34023 · doi:10.1016/j.crma.2018.01.001
[14] Li, M.; Wang, J.; O’Regan, D.; Fečkan, M., Center manifolds for non-instantaneous impulses equations under nonuniform hyperbolicity, Comptes Rendus Math., 358, 341-364 (2020) · Zbl 1466.34041 · doi:10.5802/crmath.47
[15] Zhu, H.; Liao, F., Almost automorphic solutions of non-autonomous differential equations, Bull. Iran. Math. Soc., 44, 205-223 (2018) · Zbl 1409.34043 · doi:10.1007/s41980-018-0015-z
[16] Alvarez, E.; Gómez, A.; Pinto, M., \((\omega , c)\)-periodic functions and mild solutions to abstract fractional integro-differential equations, Electron. J. Qual. Theory Differ. Equ., 16, 1-8 (2018) · Zbl 1413.34220 · doi:10.14232/ejqtde.2018.1.16
[17] Agaoglou, M.; Fečkan, M.; Panagiotidou, A., Existence and uniqueness of \((\omega , c)\)-periodic solutions of semilinear evolution equations, Int. J. Dyn. Syst. Differ. Equ., 10, 149-166 (2020) · Zbl 1441.35145
[18] Li, M.; Wang, J.; Fečkan, M., \((\omega , c)\)-periodic solutions for impulsive differential systems, Commun. Math. Anal., 21, 35-64 (2018) · Zbl 1410.34049
[19] Li, M.; Wang, J.; O’Regan, D., Positive almost periodic solution for a noninstantaneous impulsive Lasota-Wazewska model, Bull. Iran. Math. Soc., 46, 851-864 (2020) · Zbl 1451.34104 · doi:10.1007/s41980-019-00297-1
[20] Liu, K.; Wang, J.; O’Regan, D.; Fečkan, M., A new class of \((\omega , c)\)-periodic non-instantaneous impulsive differential equations, Mediterr. J. Math., 17, 155, 1-22 (2020) · Zbl 1452.34027
[21] Alvarez, E.; Castillo, S.; Pinto, M., \((\omega , c)-\) pseudo periodic functions, first order Cauchy problem and Lasota-Wazewska model with ergodic and unbounded oscillating production of red cells, Bound. Value Probl., 106, 1-20 (2019) · Zbl 1513.34155
[22] Alvarez, E.; Castillo, S.; Pinto, M., \((\omega , c)-\) asymptotically periodic functions, first-order Cauchy problem, and Lasota-Wazewska model with unbounded oscillating production of red cells, Math. Methods Appl. Sci., 43, 305-319 (2018) · Zbl 1451.34047 · doi:10.1002/mma.5880
[23] Fečkan, M.; Liu, K.; Wang, J., \((\omega,{\mathbb{T}})\)-periodic solutions of impulsive evolution equations, Evol. Equ. Control Theory (2021) · Zbl 1483.34082 · doi:10.3934/eect.2021006
[24] Yang, P.; Wang, J.; Fečkan, M., Periodic nonautonomous linear differential equations with non-instantaneous impulsive effects, Math. Methods Appl. Sci., 42, 3700-3720 (2019) · Zbl 1421.34012 · doi:10.1002/mma.5606
[25] Yang, P.; Wang, J.; Fečkan, M., Boundedness, periodicity and conditional stability of non-instantaneous impulsive evolution equations, Math. Methods Appl. Sci., 43, 5905-5926 (2020) · Zbl 1458.34111 · doi:10.1002/mma.6332
[26] Liu, K.; Fečkan, M.; O’Regan, D.; Wang, J., \((\omega, c)-\) periodic solutions for time-varying non-instantaneous impulsive differential systems, Appl. Anal. (2021) · Zbl 1509.34019 · doi:10.1080/00036811.2021.1895123
[27] Brill, H., A semilinear Sobolev evolution equation in a Banach space, J. Differ. Equ., 24, 412-425 (1977) · Zbl 0346.34046 · doi:10.1016/0022-0396(77)90009-2
[28] Samoilenko, A.; Perestyuk, N., Impulsive Differential Equations (1995), Singapore: World Scientific, Singapore · Zbl 0837.34003 · doi:10.1142/2892
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.