×

On the existence of the Tweedie power parameter implicit estimator. (English) Zbl 07584457

Summary: A special class of exponential dispersion models is the class of Tweedie distributions. This class is very significant in statistical modeling as it includes a number of familiar distributions such as Gaussian, Gamma and compound Poisson. A Tweedie distribution has a power parameter \(p\), a mean \(m\) and a dispersion parameter \(\phi\). The value of the power parameter lies in identifying the corresponding distribution of the Tweedie family. The basic objective of this research work resides in investigating the existence of the implicit estimator of the power parameter of the Tweedie distribution. A necessary and sufficient condition on the mean parameter \(m\), suggesting that the implicit estimator of the power parameter \(p\) exists, was established and we provided some asymptotic properties of this estimator.

MSC:

62F12 Asymptotic properties of parametric estimators
60E07 Infinitely divisible distributions; stable distributions
62F15 Bayesian inference
Full Text: DOI

References:

[1] J.-M. Bernardo, Reference posterior distributions for Bayesian inference, J. Roy. Statist. Soc. Ser. B 41 (1979), no. 2, 113-147. · Zbl 0428.62004
[2] W. H. Bonat and C. C. Kokonendji, Flexible Tweedie regression models for continuous data, J. Stat. Comput. Simul. 87 (2017), no. 11, 2138-2152. https://doi.org/10.1080/ 00949655.2017.1318876 · Zbl 07192054 · doi:10.1080/00949655.2017.1318876
[3] L. Bouchaala, A. Masmoudi, F. Gargouri, and A. Rebai, Improving algorithms for struc-ture learning in bayesian networks using a new implicit score, Expert Systems with Applications 37 (2010), no. 7, 5470-5475.
[4] R. W. Butler and A. T. A. Wood, Laplace approximation for Bessel functions of matrix argument, J. Comput. Appl. Math. 155 (2003), no. 2, 359-382. · Zbl 1027.65033
[5] P. K. Dunn and G. K. Smyth, Series evaluation of Tweedie exponential dispersion model densities, Stat. Comput. 15 (2005), no. 4, 267-280. https://doi.org/10.1007/s11222-005-4070-y · doi:10.1007/s11222-005-4070-y
[6] P. K. Dunn and G. K. Smyth, Evaluation of Tweedie exponential dispersion model densities by Fourier inversion, Stat. Comput. 18 (2008), no. 1, 73-86. https://doi. org/10.1007/s11222-007-9039-6 · doi:10.1007/s11222-007-9039-6
[7] A. Ghribi and A. Masmoudi, A compound Poisson model for learning discrete Bayesian networks, Acta Math. Sci. Ser. B (Engl. Ed.) 33 (2013), no. 6, 1767-1784. https://doi. org/10.1016/S0252-9602(13)60122-8 · Zbl 1313.62029 · doi:10.1016/S0252-9602(13)60122-8
[8] A. Hassairi, A. Masmoudi, and C. C. Kokonendji, Implicit distributions and estimation, Comm. Statist. Theory Methods 34 (2005), no. 2, 245-252. https://doi.org/10.1080/ 03610920509342417 · Zbl 1062.62016 · doi:10.1080/03610920509342417
[9] H. B. Hassen, L. Bouchaala, A. Masmoudi, and A. Rebai, Learning parameters and structure of bayesian networks using an implicit framework, SCIYO. COM, 2010.
[10] A. Hassine, A. Ghribi, and A. Masmoudi, Tweedie regression model: a proposed sta-tistical approach for modelling indoor signal path loss, Intern. J. Numer. Modelling, Electronic Networks, Devices and Fields 6 (2017), no. 30, e2243.
[11] B. Jørgensen, Exponential dispersion models, J. Roy. Statist. Soc. Ser. B 49 (1987), no. 2, 127-162. · Zbl 0662.62078
[12] B. Jørgensen, The theory of dispersion models, Monographs on Statistics and Applied Probability, 76, Chapman & Hall, London, 1997. · Zbl 0928.62052
[13] R. E. Kass and L. Wasserman, The selection of prior distributions by formal rules, J. Am. Stat. Assoc. 91 (1996), no. 435, 1343-1370. · Zbl 0884.62007
[14] G. Letac, Lectures on natural exponential families and their variance functions, Mono-grafías de Matemática, 50, Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 1992. · Zbl 0983.62501
[15] K. Masmoudi and A. Masmoudi, A new class of continuous Bayesian networks, Internat. J. Approx. Reason. 109 (2019), 125-138. https://doi.org/10.1016/j.ijar.2019.03. 010 · Zbl 1466.62346 · doi:10.1016/j.ijar.2019.03.010
[16] J. Nelder, An alternative view of the splicing data, Appl. Stat. (1994) 469-476.
[17] C. P. Robert, The Bayesian Choice, Springer-Verlag, New York, 1994. https://doi. org/10.1007/978-1-4757-4314-2 · Zbl 0808.62005 · doi:10.1007/978-1-4757-4314-2
[18] R. Tibshirani, Noninformative priors for one parameter of many, Biometrika 76 (1989), no. 3, 604-608. https://doi.org/10.1093/biomet/76.3.604 · Zbl 0678.62010 · doi:10.1093/biomet/76.3.604
[19] M. C. K. Tweedie, An index which distinguishes between some important exponential families, in Statistics: applications and new directions (Calcutta, 1981), 579-604, Indian Statist. Inst., Calcutta, 1984.
[20] V. M. Zolotarev, One-dimensional stable distributions, translated from the Russian by H. H. McFaden, translation edited by Ben Silver, Translations of Mathemati-cal Monographs, 65, American Mathematical Society, Providence, RI, 1986. https: //doi.org/10.1090/mmono/065 · Zbl 0589.60015 · doi:10.1090/mmono/065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.