×

Optimal control and directional differentiability for elliptic quasi-variational inequalities. (English) Zbl 07563231

Summary: We focus on elliptic quasi-variational inequalities (QVIs) of obstacle type and prove a number of results on the existence of solutions, directional differentiability and optimal control of such QVIs. We give three existence theorems based on an order approach, an iteration scheme and a sequential regularisation through partial differential equations. We show that the solution map taking the source term into the set of solutions of the QVI is directionally differentiable for general data and locally Hadamard differentiable obstacle mappings, thereby extending in particular the results of our previous work which provided the first differentiability result for QVIs in infinite dimensions. Optimal control problems with QVI constraints are also considered and we derive various forms of stationarity conditions for control problems, thus supplying among the first such results in this area.

MSC:

47J20 Variational and other types of inequalities involving nonlinear operators (general)
49J21 Existence theories for optimal control problems involving relations other than differential equations
49J40 Variational inequalities
49K21 Optimality conditions for problems involving relations other than differential equations
46G05 Derivatives of functions in infinite-dimensional spaces

References:

[1] Adams, R. A., Fournier, J. J. F.: Sobolev Spaces, 2nd edn. Sobolev Academic Press (2003) · Zbl 1098.46001
[2] Adly, S.; Bergounioux, M.; Ait Mansour, M., Optimal control of a quasi-variational obstacle problem, J. Glob. Optim., 47, 3, 421-435 (2010) · Zbl 1207.49029 · doi:10.1007/s10898-008-9366-y
[3] Aliprantis, C. D., Burkinshaw, O.: Positive operators, volume 119 of Pure and Applied Mathematics. Academic Press, Inc., Orlando (1985) · Zbl 0608.47039
[4] Alphonse, A.; Hintermüller, M.; Rautenberg, CN, Directional differentiability for elliptic quasi-variational inequalities of obstacle type, Calc. Var Partial Differ. Equ., 58, 1, Art. 39, 47 (2019) · Zbl 1439.49014 · doi:10.1007/s00526-018-1473-0
[5] Alphonse, A., Hintermüller, M., Rautenberg, C. N.: Recent trends and views on elliptic quasi-variational inequalities. In: Hintermüller, M., Rodrigues, J. F. (eds.) Topics in Applied Analysis and Optimisation, pp 1-31. Springer International Publishing, Cham (2019) · Zbl 1448.49013
[6] Alphonse, A.; Hintermüller, M.; Rautenberg, CN, Stability of the solution set of quasi-variational inequalities and optimal control, SIAM J. Control Optim., 58, 6, 3508-3532 (2020) · Zbl 1516.49004 · doi:10.1137/19M1250327
[7] Alphonse, A.; Rautenberg, CN; Rodrigues, JF, Analysis of a quasi-variational contact problem arising in thermoelasticity, Nonlinear Anal., 217, 112728, 40 (2022) · Zbl 1509.35301 · doi:10.1016/j.na.2021.112728
[8] Arendt, W.; Nittka, R., Equivalent complete norms and positivity, Arch. Math. (Basel), 92, 5, 414-427 (2009) · Zbl 1182.46006 · doi:10.1007/s00013-009-3190-6
[9] Aubin, J.-P.: Mathematical methods of game and economic theory, volume 7 of Studies in Mathematics and its Applications. North-Holland Publishing co., Amsterdam (1979) · Zbl 0452.90093
[10] Azevedo, A.; Miranda, F.; Santos, L., Variational and quasivariational inequalities with first order constraints, J. Math. Anal. Appl., 397, 2, 738-756 (2013) · Zbl 1258.49004 · doi:10.1016/j.jmaa.2012.07.033
[11] Azevedo, A., Miranda, F., Santos, L.: Stationary Quasivariational Inequalities with Gradient Constraint and Nonhomogeneous Boundary Conditions, pp. 95-112. Springer, Berlin (2014) · Zbl 1321.49012
[12] Baiocchi, C., Capelo, A.: Variational and quasivariational inequalities. Wiley-Interscience (1984) · Zbl 0551.49007
[13] Barbu, V.: Optimal control of variational inequalities, volume 100 of Research Notes in Mathematics. Pitman (Advanced Publishing Program), Boston (1984) · Zbl 0574.49005
[14] Barrett, JW; Prigozhin, L., A quasi-variational inequality problem in superconductivity, Math. Models Methods Appl. Sci., 20, 5, 679-706 (2010) · Zbl 1225.35133 · doi:10.1142/S0218202510004404
[15] Barrett, JW; Prigozhin, L., A quasi-variational inequality problem arising in the modeling of growing sandpiles, ESAIM Math. Model. Numer. Anal., 47, 4, 1133-1165 (2013) · Zbl 1332.65090 · doi:10.1051/m2an/2012062
[16] Barrett, JW; Prigozhin, L., Lakes and rivers in the landscape: a quasi-variational inequality approach, Interfaces Free Bound., 16, 2, 269-296 (2014) · Zbl 1297.35122 · doi:10.4171/IFB/320
[17] Bensoussan, A.; Goursat, M.; quasi-variationnelles, J-LLionsContrôleimpulsionneletinéquations, Contrôle impulsionnel et inéquations stationnaires, C. R. Acad. Sci. Paris Sér. A-B, 276, A1279-A1284 (1973) · Zbl 0264.49004
[18] Bergounioux, M., Optimal control of an obstacle problem, Appl. Math. Optim., 36, 2, 147-172 (1997) · Zbl 0883.49018 · doi:10.1007/s002459900058
[19] Bergounioux, M., Use of augmented Lagrangian methods for the optimal control of obstacle problems, J. Optim. Theory Appl., 95, 1, 101-126 (1997) · Zbl 0892.49003 · doi:10.1023/A:1022635428708
[20] Bonnans, JF; Shapiro, A., Perturbation Analysis of Optimization Problems Springer Series in Operations Research (2000), New York: Springer, New York · Zbl 0966.49001 · doi:10.1007/978-1-4612-1394-9
[21] Cal Neto, JT; Tomei, C., Numerical analysis of semilinear elliptic equations with finite spectral interaction, J. Math. Anal. Appl., 395, 1, 63-77 (2012) · Zbl 1252.65187 · doi:10.1016/j.jmaa.2012.04.073
[22] Carl, S., Le, V. K., Motreanu, D.: Nonsmooth Variational Problems and Their Inequalities. Springer Monographs in Mathematics. Springer, New York. Comparison principles and applications (2007) · Zbl 1109.35004
[23] Dietrich, H.: Über Probleme der optimalen Steuerung mit einer Quasivariationsungleichung. In: Operations Research Proceedings 1999 (Magdeburg), pp. 111-116. Springer, Berlin (2000) · Zbl 0973.49005
[24] Dietrich, H.: Optimal control problems for certain quasivariational inequalities. Optimization 49(1-2), 67-93. In celebration of Prof. Dr. Alfred Göpfert 65th birthday (2001) · Zbl 0973.49004
[25] Facchinei, F.; Kanzow, C., Generalized nash equilibrium problems, 4OR, 5, 3, 173-210 (2007) · Zbl 1211.91162 · doi:10.1007/s10288-007-0054-4
[26] Fukao, T.; Kenmochi, N., Abstract theory of variational inequalities with Lagrange multipliers and application to nonlinear PDEs, Math. Bohem., 139, 2, 391-399 (2014) · Zbl 1340.34216 · doi:10.21136/MB.2014.143864
[27] Fukao, T.; Kenmochi, N., Quasi-variational inequality approach to heat convection problems with temperature dependent velocity constraint, Discret. Contin. Dyn. Syst., 35, 6, 2523-2538 (2015) · Zbl 1386.35218 · doi:10.3934/dcds.2015.35.2523
[28] Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes, volume 19 of De Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin. extended edition (2011) · Zbl 1227.31001
[29] Gilbarg, D., Trudinger, N. S.: Elliptic partial differential equations of second order. Springer (1983) · Zbl 0562.35001
[30] Glowinski, R.: Numerical methods for nonlinear variational problems. Springer (1984) · Zbl 0536.65054
[31] Hájek, P., Johanis, M.: Smooth analysis in Banach spaces, volume 19 of De Gruyter Series in Nonlinear Analysis and Applications. De Gruyter, Berlin (2014) · Zbl 1327.46002
[32] Haraux, A., How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities, J. Math. Soc. Jpn., 29, 4, 615-631 (1977) · Zbl 0387.46022 · doi:10.2969/jmsj/02940615
[33] Harder, F.; Wachsmuth, G., Comparison of optimality systems for the optimal control of the obstacle problem, GAMM-Mitt., 40, 4, 312-338 (2018) · Zbl 1525.49022 · doi:10.1002/gamm.201740004
[34] Harker, P. T.: Generalized nash games and quasi-variational inequalities. Eur. J. Oper. Res. 54(1), 81-94 (1991) · Zbl 0754.90070
[35] Hintermu̇ller, M.; Kopacka, I., Mathematical programs with complementarity constraints in function space: C- and strong stationarity and a path-following algorithm. SIAM, J. Optim., 20, 2, 868-902 (2009) · Zbl 1189.49032
[36] Hintermu̇ller, M.; Kopacka, I., A smooth penalty approach and a nonlinear multigrid algorithm for elliptic MPECs, Comput. Optim. Appl., 50, 1, 111-145 (2011) · Zbl 1229.49032 · doi:10.1007/s10589-009-9307-9
[37] Hintermu̇ller, M.; Mordukhovich, BS; Surowiec, TM, Several approaches for the derivation of stationarity conditions for elliptic MPECs with upper-level control constraints, Math. Program., 146, 1-2, 555-582 (2014) · Zbl 1332.90300 · doi:10.1007/s10107-013-0704-6
[38] Hintermu̇ller, M.; Surowiec, T., First-order optimality conditions for elliptic mathematical programs with equilibrium constraints via variational analysis, SIAM J. Optim., 21, 4, 1561-1593 (2011) · Zbl 1248.49030 · doi:10.1137/100802396
[39] Kadoya, A.; Kenmochi, N.; Niezgȯdka, M., Quasi-variational inequalities in economic growth models with technological development, Adv. Math. Sci. Appl., 24, 1, 185-214 (2014) · Zbl 1322.91037
[40] Kano, R., Murase, Y., Kenmochi, N.: Nonlinear evolution equations generated by subdifferentials with nonlocal constraints. In: Nonlocal and abstract parabolic equations and their applications, volume 86 of Banach Center Publ., pp. 175-194. Polish Acad. Sci. Inst. Math., Warsaw (2009) · Zbl 1178.35224
[41] Kenmochi, N., Parabolic quasi-variational diffusion problems with gradient constraints, Discrete Contin. Dyn. Syst. Ser. S, 6, 2, 423-438 (2013) · Zbl 1264.35132
[42] Kinderlehrer, D., Stampacchia, G.: An introduction to variational inequalities and their applications. SIAM (2000) · Zbl 0988.49003
[43] Kunisch, K.; Wachsmuth, D., Sufficient optimality conditions and semi-smooth Newton methods for optimal control of stationary variational inequalities, ESAIM Control Optim. Calc. Var., 18, 2, 520-547 (2012) · Zbl 1246.49021 · doi:10.1051/cocv/2011105
[44] Kunze, M.; Rodrigues, JF, An elliptic quasi-variational inequality with gradient constraints and some of its applications, Math. Methods Appl. Sci., 23, 10, 897-908 (2000) · Zbl 0956.35059 · doi:10.1002/1099-1476(20000710)23:10<897::AID-MMA141>3.0.CO;2-H
[45] Laetsch, T., A uniqueness theorem for elliptic quasi-variational inequalities, J. Funct. Anal., 18, 286-287 (1975) · Zbl 0327.49003 · doi:10.1016/0022-1236(75)90017-8
[46] Lewy, H.; Stampacchia, G., On the regularity of the solution of a variational inequality, Comm. Pure Appl. Math., 22, 153-188 (1969) · Zbl 0167.11501 · doi:10.1002/cpa.3160220203
[47] Lions, J. -L.: Quelques MÉthodes De RÉsolutions Des ProblÉmes Aux Limites Non LinÉaires. Gauthier-Villars, Dunod (1969) · Zbl 0189.40603
[48] Lions, J-L, Sur le côntrole optimal des systemes distribuées, Enseigne, 19, 125-166 (1973) · Zbl 0278.49004
[49] Meyer-Nieberg, P.: Banach Lattices. Universitext. Springer, Berlin (1991) · Zbl 0743.46015
[50] Mignot, F., Contrôle dans les inéquations variationelles elliptiques, J. Funct. Anal., 22, 2, 130-185 (1976) · Zbl 0364.49003 · doi:10.1016/0022-1236(76)90017-3
[51] Mignot, F.; Puel, J-P, Optimal control in some variational inequalities, SIAM J. Control Optim., 22, 3, 466-476 (1984) · Zbl 0561.49007 · doi:10.1137/0322028
[52] Miranda, F.; Rodrigues, J-F; Santos, L., On a p-curl system arising in electromagnetism, Discrete Contin. Dyn. Syst. Ser. S, 5, 3, 605-629 (2012) · Zbl 1252.35257
[53] Mordukhovich, BS; Outrata, J., Coderivative analysis of quasi-variational inequalities with applications to stability and optimization, SIAM J. Optim., 18, 2, 389-412 (2007) · Zbl 1145.49012 · doi:10.1137/060665609
[54] Murase, Y., Kadoya, A., Kenmochi, N.: Optimal control problems for quasi-variational inequalities and its numerical approximation. Discrete Contin. Dyn. Syst., Dynamical systems, differential equations and applications. 8th AIMS Conference Suppl. vol. II, pp. 1101-1110 (2011) · Zbl 1306.49045
[55] Pang, J-S; Fukushima, M., Quasi-variational inequalities, generalized nash equilibria, and multi-leader-follower games, Comput. Manag. Sci., 2, 1, 21-56 (2005) · Zbl 1115.90059 · doi:10.1007/s10287-004-0010-0
[56] Prigozhin, L., Sandpiles and river networks: extended systems with non-local interactions, Phys. Rev. E, 49, 1161-1167 (1994) · doi:10.1103/PhysRevE.49.1161
[57] Prigozhin, L., On the Bean critical-state model in superconductivity, Eur. J. Appl. Math., 7, 237-247 (1996) · Zbl 0873.49007 · doi:10.1017/S0956792500002333
[58] Prigozhin, L., Sandpiles, river networks, and type-ii superconductors, Free Bound. Probl., 10, 2-4 (1996)
[59] Prigozhin, L., Variational model of sandpile growth, Eur. J. Appl. Math., 7, 3, 225-235 (1996) · Zbl 0913.73079 · doi:10.1017/S0956792500002321
[60] Robinson, SM, Stability theory for systems of inequalities. II. Differentiable nonlinear systems, SIAM J. Numer. Anal., 13, 4, 497-513 (1976) · Zbl 0347.90050 · doi:10.1137/0713043
[61] Rodrigues, J. F.: Obstacle problems in mathematical physics, volume 134 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam. Notas de Matemática [Mathematical Notes], 114 (1987) · Zbl 0606.73017
[62] Rodrigues, JF; Santos, L., A parabolic quasi-variational inequality arising in a superconductivity model, Ann. Scuola Norm. Sup Pisa Cl. Sci. (4), 29, 1, 153-169 (2000) · Zbl 0953.35079
[63] Roubíček, T.: Nonlinear partial differential equations with applications, Volume 153 of International Series of Numerical Mathematics. Birkhäuser, Basel (2005) · Zbl 1087.35002
[64] Scheel, H.; Scholtes, S., Mathematical programs with complementarity constraints: stationarity, optimality, and sensitivity, Math. Oper. Res., 25, 1, 1-22 (2000) · Zbl 1073.90557 · doi:10.1287/moor.25.1.1.15213
[65] Schiela, A.; Wachsmuth, D., Convergence analysis of smoothing methods for optimal control of stationary variational inequalities with control constraints, ESAIM Math. Model. Numer. Anal., 47, 3, 771-787 (2013) · Zbl 1266.65112 · doi:10.1051/m2an/2012049
[66] Showalter, R. E.: Monotone operators in banach space and nonlinear partial differential equations. American Mathematical Society (1997) · Zbl 0870.35004
[67] Tartar, L., Inéquations quasi variationnelles abstraites, CR Acad. Sci. Paris Sér. A, 278, 1193-1196 (1974) · Zbl 0334.49003
[68] Trȯltzsch, F.: Optimal Control of Partial Differential Equations, Volume 112 of Graduate Studies in Mathematics. American Mathematical Society, Providence. Theory, methods and applications, Translated from the 2005 German original by Ju̇rgen Sprekels (2010) · Zbl 1195.49001
[69] Wachsmuth, G., Strong stationarity for optimal control of the obstacle problem with control constraints, SIAM J. Optim., 24, 4, 1914-1932 (2014) · Zbl 1328.49007 · doi:10.1137/130925827
[70] Wachsmuth, G., Towards M-stationarity for optimal control of the obstacle problem with control constraints, SIAM J. Control Optim., 54, 2, 964-986 (2016) · Zbl 1337.49042 · doi:10.1137/140980582
[71] Wachsmuth, G., A guided tour of polyhedric sets: basic properties, new results on intersections, and applications, J. Convex Anal., 26, 1, 153-188 (2019) · Zbl 1412.52006
[72] Wachsmuth, G., Elliptic quasi-variational inequalities under a smallness assumption: uniqueness, differential stability and optimal control, Calc. Var. Partial Differ. Equ., 59, 2, Paper 82, 15 (2020) · Zbl 1444.49006 · doi:10.1007/s00526-020-01743-3
[73] Zeidler, E.: Nonlinear Functional Analysis and Applications, volume II/B: Nonlinear Monotone Operators. Springer, Berlin (1989)
[74] Zowe, J.; Kurcyusz, S., Regularity and stability for the mathematical programming problem in Banach spaces, Appl. Math. Optim., 5, 1, 49-62 (1979) · Zbl 0401.90104 · doi:10.1007/BF01442543
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.