×

Non-equilibrium phase transition and cluster size distribution in aggregation and weighted-fragmentation processes. (English) Zbl 07562485

Summary: Through numerical simulations, we investigate the influence of an index \(\phi\) on the cluster size distribution in aggregation and weighted-fragmentation processes where a decomposed cluster of size \(a\) is selected with a power-law weight \(W(a) \propto a^\phi\). We reveal the existence of a non-equilibrium phase transition from an exponentially decayed phase to a partially condensed phase and calculate the threshold \(\phi_c\) for this phase transition. For \(\phi > \phi_c\), cluster size distribution asymptotically obeys exponential decay, which results in the largest cluster sized on the order of \(\ln N\), where \(N\) is a total cluster number. Exponential decay rates are computed as a function of \(\phi\). It is notable that the curvature of the distribution changes its sign at \(\phi = 1\). For \(\phi < \phi_c\), a partially condensed phase takes place and one big cluster sized on the order of a total monomer number \(M\) emerges and coexists with small clusters.

MSC:

82-XX Statistical mechanics, structure of matter
Full Text: DOI

References:

[1] Schmelzer, J.; Röpke, G.; Mahnke, R., Aggregation Phenomena in Complex Systems (1999), Wiley-VCH: Wiley-VCH Weinheim · Zbl 0989.00003
[2] Leyvraz, F., Scaling theory and exactly solved models in the kinetics of irreversible aggregation, Phys. Rep., 383, 2-3, 95-212 (2003)
[3] Leyvraz, F., Exact asymptotic solution of an aggregation model with a bell-shaped distribution, Phys. Rev. E, 103, 2 (2021)
[4] Vigil, R. D.; Ziff, R. M.; Lu, B., New universality class for gelation in a system with particle breakup, Phys. Rev. B, 38, 942-945 (1988), URL https://link.aps.org/doi/10.1103/PhysRevB.38.942
[5] Barrow, J. D., Coagulation with fragmentation, J. Phys. A: Math. Gen., 14, 3, 729-733 (1981), URL https://doi.org/10.1088/0305-4470/14/3/019 · Zbl 0454.70020
[6] Blatza, P. J.; Tobolsky, A., Note on the kinetics of systems manifesting simultaneous polymerization-depolymerization phenomena, J. Phys. Chem., 49, 2, 77 (1945)
[7] Pöschel, T.; Brilliantov, N.; Frömmel, C., Kinetics of prion growth, Biophys. J., 85, 6, 3460-3474 (2003)
[8] Wattis, J. A.D., An introduction to mathematical models of coagulation-fragmentation processes: A discrete deterministic mean-field approach, Physica D, 222, 1, 1-20 (2006) · Zbl 1113.35145
[9] Brilliantov, N. V.; Bodrova, A. S.; Krapivsky, P. L., A model of ballistic aggregation and fragmentation, J. Stat. Mech. Theory Exp., 2009, 06, P06011 (2009)
[10] Rotstein, H. G., Cluster-size dynamics: A phenomenological model for the interaction between coagulation and fragmentation processes, J. Chem. Phys., 142, 22, Article 224101 pp. (2015)
[11] Brilliantov, N.; Krapivsky, P.; Bodrova, A.; Spahn, F.; Hayakawa, H.; Stadnichuk, V.; Schmidt, J., Size distribution of particles in Saturn‘s rings from aggregation and fragmentation, Proc. Natl. Acad. Sci. USA, 112, 31, 9536-9541 (2015)
[12] Yamamoto, H.; Ohtsuki, T.; Fujihara, A.; Tanimoto, S.; Yamamoto, K.; Miyazima, S., Asymptotic analysis of the model for distribution of high-tax payers, Japan J. Indust. Appl. Math., 24, 211-218 (2007) · Zbl 1151.91660
[13] Yamamoto, H.; Ohtsuki, T.; Fujihara, A., Double power-law in aggregation-chipping processes, Phys. Rev. E, 77, Article 061122 pp. (2008)
[14] Yamamoto, H.; Ohtsuki, T., Universal power-law and partial condensation in aggregation-chipping processes, Phys. Rev. E, 81, Article 061116 pp. (2010)
[15] Yamamoto, H.; Sekiyama, M.; Ohtsuki, T., Asymptotic power-law index in aggregation and weighted-chipping processes, J. Phys. Soc. Japan, 84, Article 054003 pp. (2015)
[16] Sekiyama, M.; Ohtsuki, T.; Yamamoto, H., Analytical solution of Smoluchowski equations in aggregation?fragmentation processes, J. Phys. Soc. Japan, 86, Article 104003 pp. (2017)
[17] Pego, R. L.; Velázquez, J. J.L., Temporal oscillations in Becker-Döring equations with atomization, Nonlinearity, 33, 4, 1812-1846 (2020) · Zbl 1444.34065
[18] Niethammer, B.; Pego, R. L.; Schlichting, A.; Velázquez, J. J.L., Oscillations in a Becker-Döring model with injection and depletion (2021), arXiv:2102.06751
[19] Brilliantov, N. V.; Otieno, W.; Matveev, S. A.; Smirnov, A. P.; Tyrtyshnikov, E. E.; Krapivsky, P. L., Steady oscillations in aggregation-fragmentation processes, Phys. Rev. E, 98, Article 012109 pp. (2018), URL https://link.aps.org/doi/10.1103/PhysRevE.98.012109
[20] Budzinskiy, S. S.; Matveev, S. A.; Krapivsky, P. L., Hopf bifurcation in addition-shattering kinetics, Phys. Rev. E, 103, 4 (2021)
[21] Kalinov, A.; Osinsky, A. I.; Matveev, S. A.; Otieno, W.; Brilliantov, N. V., Direct simulation Monte Carlo for new regimes in aggregation-fragmentation kinetics (2021), arXiv:2103.09481
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.