×

A survey of bidding games on graphs (Invited Paper). (English) Zbl 07559458

Konnov, Igor (ed.) et al., 31st international conference on concurrency theory. CONCUR 2020, September 1–4, 2020, Vienna, Austria, virtual conference. Proceedings. Wadern: Schloss Dagstuhl – Leibniz Zentrum für Informatik. LIPIcs – Leibniz Int. Proc. Inform. 171, Article 2, 21 p. (2020).
Summary: A graph game is a two-player zero-sum game in which the players move a token throughout a graph to produce an infinite path, which determines the winner or payoff of the game. In bidding games, both players have budgets, and in each turn, we hold an “auction” (bidding) to determine which player moves the token. In this survey, we consider several bidding mechanisms and study their effect on the properties of the game. Specifically, bidding games, and in particular bidding games of infinite duration, have an intriguing equivalence with random-turn games in which in each turn, the player who moves is chosen randomly. We show how minor changes in the bidding mechanism lead to unexpected differences in the equivalence with random-turn games.
For the entire collection see [Zbl 1445.68020].

MSC:

68Q85 Models and methods for concurrent and distributed computing (process algebras, bisimulation, transition nets, etc.)
Full Text: DOI

References:

[1] M. Aghajohari, G. Avni, and T. A. Henzinger. Determinacy in discrete-bidding infinite-duration games. In Proc. 30th CONCUR, volume 140 of LIPIcs, pages 20:1-20:17, 2019. · Zbl 1509.91007
[2] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. J. ACM, 49(5):672-713, 2002. · Zbl 1326.68181
[3] K.R. Apt and E. Grädel. Lectures in Game Theory for Computer Scientists. Cambridge University Press, 2011. · Zbl 1214.91003
[4] G. Avni, T. A. Henzinger, and V. Chonev. Infinite-duration bidding games. J. ACM, 66(4):31:1-31:29, 2019. · Zbl 1448.91060
[5] G. Avni, T. A. Henzinger, and R. Ibsen-Jensen. Infinite-duration poorman-bidding games. In Proc. 14th WINE, volume 11316 of LNCS, pages 21-36. Springer, 2018. · Zbl 1443.91070
[6] G. Avni, T. A. Henzinger, R. Ibsen-Jensen, and P. Novotný. Bidding games on markov decision processes. In Proc. 13th RP, pages 1-12, 2019. · Zbl 1455.91054
[7] G. Avni, T. A. Henzinger, and Ð. Žikelić. Bidding mechanisms in graph games. In In Proc. 44th MFCS, volume 138 of LIPIcs, pages 11:1-11:13, 2019. · Zbl 1539.91027
[8] G. Avni, R. Ibsen-Jensen, and J. Tkadlec. All-pay bidding games on graphs. Proc. 34th AAAI, 2020.
[9] G. Avni, I. Jecker, and Ð. Žikelić. Infinite-duration all-pay bidding games. CoRR, abs/2005.06636, 2020. arXiv:2005.06636.
[10] M. R. Baye and H. C. Hoppe. The strategic equivalence of rent-seeking, innovation, and patent-race games. Games and Economic Behavior, 44(2):217-226, 2003. · Zbl 1056.91015
[11] J. Bhatt and S. Payne. Bidding chess. Math. Intelligencer, 31:37-39, 2009. · Zbl 1328.00021
[12] E. Borel. La théorie du jeu les équations intégrales á noyau symétrique. Comptes Rendus de l’Académie, 173(1304-1308):58, 1921. · JFM 48.0599.03
[13] T. Brázdil, V. Brozek, K. Etessami, and A. Kucera. Approximating the termination value of one-counter mdps and stochastic games. In Proc. 38th ICALP, pages 332-343, 2011. · Zbl 1334.68113
[14] T. Brázdil, V. Brozek, K. Etessami, A. Kucera, and D. Wojtczak. One-counter markov decision processes. In Proc. 21st SODA, pages 863-874, 2010. · Zbl 1288.90119
[15] J. F. Canny. Some algebraic and geometric computations in PSPACE. In Proc. 20th STOC, pages 460-467, 1988.
[16] K. Chatterjee, A. K. Goharshady, and Y. Velner. Quantitative analysis of smart contracts. In Proc. 27th ESOP, pages 739-767, 2018. · Zbl 1418.68024
[17] A. Condon. The complexity of stochastic games. Inf. Comput., 96(2):203-224, 1992. · Zbl 0756.90103
[18] M. Develin and S. Payne. Discrete bidding games. The Electronic Journal of Combinatorics, 17(1):R85, 2010. · Zbl 1188.91048
[19] A. E. Emerson, C. S. Jutla, and P. A. Sistla. On model-checking for fragments of µ-calculus. In Proc. 5th CAV, pages 385-396, 1993.
[20] A. R. Howard. Dynamic Programming and Markov Processes. MIT Press, 1960. · Zbl 0091.16001
[21] K. A. Konrad and D. Kovenock. Multi-battle contests. Games and Economic Behavior, 66(1):256-274, 2009. · Zbl 1161.91318
[22] U. Larsson and J. Wästlund. Endgames in bidding chess. Games of No Chance 5, 70, 2018. · Zbl 1444.91065
[23] A. J. Lazarus, D. E. Loeb, J. G. Propp, W. R. Stromquist, and D. H. Ullman. Combinatorial games under auction play. Games and Economic Behavior, 27(2):229-264, 1999. · Zbl 0949.91001
[24] A. J. Lazarus, D. E. Loeb, J. G. Propp, and D. Ullman. Richman games. Games of No Chance, 29:439-449, 1996.
[25] R. Meir, G. Kalai, and M. Tennenholtz. Bidding games and efficient allocations. Games and Economic Behavior, 2018. doi:10.1016/j.geb.2018.08.005. · Zbl 1419.91072 · doi:10.1016/j.geb.2018.08.005
[26] M. Menz, J. Wang, and J. Xie. Discrete all-pay bidding games. CoRR, abs/1504.02799, 2015.
[27] Y. Peres, O. Schramm, S. Sheffield, and D. B. Wilson. Tug-of-war and the infinity laplacian. J. Amer. Math. Soc., 22:167-210, 2009. · Zbl 1206.91002
[28] Y. Peres and Z. Sunic. Biased infinity laplacian boundary problem on finite graphs. CoRR, abs/1912.13394, 2019. arXiv:1912.13394.
[29] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th POPL, pages 179-190, 1989.
[30] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley & Sons, Inc., New York, NY, USA, 2005. · Zbl 1184.90170
[31] M.O. Rabin. Decidability of second order theories and automata on infinite trees. Transaction of the AMS, 141:1-35, 1969. · Zbl 0221.02031
[32] G. Tullock. Toward a Theory of the Rent Seeking Society, chapter Efficient rent seeking, pages 97-112. College Station: Texas A&M Press, 1980.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.