×

A branch-and-bound algorithm for team formation on social networks. (English) Zbl 07548831

Summary: The team formation problem (TFP) aims to construct a capable team that can communicate and collaborate effectively. The cost of communication is quantified using the proximity of the potential members in a social network. We study a TFP with two measures for communication effectiveness; namely, we minimize the sum of communication costs, and we impose an upper bound on the largest communication cost. This problem can be formulated as a constrained quadratic set covering problem. Our experiments show that a general-purpose solver is capable of solving small and medium-sized instances to optimality. We propose a branch-and-bound algorithm to solve larger sizes: we reformulate the problem and relax it in such a way that it decomposes into a series of linear set covering problems, and we impose the relaxed constraints through branching. Our computational experiments show that the algorithm is capable of solving large-size instances, which are intractable for the solver.
Summary of contribution: This paper presents an exact algorithm for the Team Formation Problem (TFP), in which the aim is, given a project and its required skills, to construct a capable team that can communicate and collaborate effectively. This combinatorial optimization problem is modeled as a quadratic set covering problem. The study provides a novel branch-and-bound algorithm where a reformulation of the problem is relaxed so that it decomposes into a series of linear set covering problems and the relaxed constraints are imposed through branching. The algorithm is able to solve instances that are intractable for commercial solvers. The study illustrates an efficient usage of algorithmic methods and modelling techniques for an operations research problem. It contributes to the field of computational optimization by proposing a new application as well as a new algorithm to solve a quadratic version of a classical combinatorial optimization problem.

MSC:

90-XX Operations research, mathematical programming
91-XX Game theory, economics, finance, and other social and behavioral sciences

Software:

Knapsack

References:

[1] Adams WP , Sherali HD (1986) A tight linearization and an algorithm for zero-one quadratic programming problems. Management Sci. 32(10):1274-1290.Link, Google Scholar · Zbl 0623.90054
[2] Adams WP , Guignard M , Hahn PM , Hightower WL (2007) A level-2 reformulation-linearization technique bound for the quadratic assignment problem. Eur. J. Oper. Res. 180(3):983-996.Crossref, Google Scholar · Zbl 1121.90082 · doi:10.1016/j.ejor.2006.03.051
[3] Agustín-Blas LE , Salcedo-Sanz S , Ortiz-García EG , Portilla-Figueras A , Pérez-Bellido ÁM , Jiménez-Fernández S (2011) Team formation based on group technology: A hybrid grouping genetic algorithm approach. Comput. Oper. Res. 38(2):484-495.Crossref, Google Scholar · Zbl 1232.68099 · doi:10.1016/j.cor.2010.07.006
[4] Anagnostopoulos A , Becchetti L , Castillo C , Gionis A , Leonardi S (2012) Online team formation in social networks. Mille A, ed. Proc. 21st Internat. Conf. World Wide Web (ACM, New York), 839-848.Google Scholar
[5] Avgerinos E , Gokpinar B (2016) Team familiarity and productivity in cardiac surgery operations: The effect of dispersion, bottlenecks, and task complexity. Manufacturing Service Oper. Management 19(1):19-35.Link, Google Scholar
[6] Baykasoglu A , Dereli T , Das S (2007) Project team selection using fuzzy optimization approach. Cybern. Systems Internat. J . 38(2):155-185.Crossref, Google Scholar · Zbl 1156.90465 · doi:10.1080/01969720601139041
[7] Bazaraa MS , Goode JJ (1975) A cutting-plane algorithm for the quadratic set-covering problem. Oper. Res. 23(1):150-158.Link, Google Scholar · Zbl 0331.90043
[8] Bergman D (2019) An exact algorithm for the quadratic multiknapsack problem with an application to event seating. INFORMS J. Comput. 31(3):477-492.Link, Google Scholar · Zbl 1528.90154
[9] Bhowmik A , Borkar VS , Garg D , Pallan M (2014) Submodularity in team formation problem. Zaki M, Kamath C, Banerjee A, Parthasarathy A, Tan PN, Obradovic Z, eds. Proc. 2014 SIAM Internat. Conf. Data Mining (SIAM, Philadelphia), 893-901.Crossref, Google Scholar · doi:10.1137/1.9781611973440.102
[10] Billionnet A , Calmels F (1996) Linear programming for the 0-1 quadratic knapsack problem. Eur. J. Oper. Res. 92(2):310-325.Crossref, Google Scholar · Zbl 0912.90221 · doi:10.1016/0377-2217(94)00229-0
[11] Boon BH , Sierksma G (2003) Team formation: Matching quality supply and quality demand. Eur. J. Oper. Res. 148(2):277-292.Crossref, Google Scholar · Zbl 1036.90503 · doi:10.1016/S0377-2217(02)00684-7
[12] Caprara A , Pisinger D , Toth P (1999) Exact solution of the quadratic knapsack problem. INFORMS J. Comput. 11(2):125-137.Link, Google Scholar · Zbl 1034.90521
[13] Centric Digital (2016) What is TAAS (team as a service) and why is it becoming so popular? Retrieved April 6, 2017, https://centricdigital.com/blog/digital-trends/what-is-team-as-a-service/.Google Scholar
[14] Chen SJ , Lin L (2004) Modeling team member characteristics for the formation of a multifunctional team in concurrent engineering. IEEE Trans. Engrg. Management 51(2):111-124.Crossref, Google Scholar · doi:10.1109/TEM.2004.826011
[15] de Klerk E , Sotirov R , Truetsch U (2015) A new semidefinite programming relaxation for the quadratic assignment problem and its computational perspectives. INFORMS J. Comput. 27(2):378-391.Link, Google Scholar · Zbl 1329.90081
[16] Dorn C , Dustdar S (2010) Composing near-optimal expert teams: a trade-off between skills and connectivity. Meersman R, Dillon T, Herrero P, eds. OTM Confederated Internat. Conf. Move Meaningful Internet Systems (Springer, New York), 472-489.Google Scholar
[17] Escoffier B , Hammer PL (2007) Approximation of the quadratic set covering problem. Discrete Optim. 4(3-4):378-386.Crossref, Google Scholar · Zbl 1157.90484 · doi:10.1016/j.disopt.2007.10.001
[18] Espinosa JA , Slaughter SA , Kraut RE , Herbsleb JD (2007) Familiarity, complexity, and team performance in geographically distributed software development. Organ. Sci. 18(4):613-630.Link, Google Scholar
[19] Farasat A , Nikolaev AG (2016) Social structure optimization in team formation. Comput. Oper. Res. 74:127-142.Crossref, Google Scholar · Zbl 1349.90547 · doi:10.1016/j.cor.2016.04.028
[20] Fitzpatrick EL , Askin RG (2005) Forming effective worker teams with multi-functional skill requirements. Comput. Industrial Engrg. 48(3):593-608.Crossref, Google Scholar · doi:10.1016/j.cie.2004.12.014
[21] Fomeni FD , Kaparis K , Letchford AN (2014) A cut-and-branch algorithm for the quadratic knapsack problem. Technical report, Lancaster University Management School, Lancaster, UK.Google Scholar
[22] Fortet R (1960) Applications de l’algebre de boole en recherche opérationelle. Rev. Française Recherche Opérationelle 4(14):17-26.Google Scholar · Zbl 0109.38201
[23] Gajewar A , Sarma AD (2012) Multi-skill collaborative teams based on densest subgraphs. Ghosh J, Liu H, Davidson I, Domeniconi C, Kamath C, eds. Proc. 2012 SIAM Internat. Conf. Data Mining (SIAM, Philadelphia).Google Scholar
[24] Guimarães DA , da Cunha AS , Pereira DL (2020) Semidefinite programming lower bounds and branch-and-bound algorithms for the quadratic minimum spanning tree problem. Eur. J. Oper. Res. 280(1):46-58.Crossref, Google Scholar · Zbl 1430.90473 · doi:10.1016/j.ejor.2019.07.038
[25] Gutiérrez JH , Astudillo CA , Ballesteros-Pérez P , Mora-Melià D , Candia-Véjar A (2016) The multiple team formation problem using sociometry. Comput. Oper. Res. 75:150-162.Crossref, Google Scholar · Zbl 1349.90548 · doi:10.1016/j.cor.2016.05.012
[26] Hahn PM , Zhu YR , Guignard M , Hightower WL , Saltzman MJ (2012) A level-3 reformulation-linearization technique-based bound for the quadratic assignment problem. INFORMS J. Comput. 24(2):202-209.Link, Google Scholar · Zbl 1465.90086
[27] Hoegl M , Gemuenden HG (2001) Teamwork quality and the success of innovative projects: A theoretical concept and empirical evidence. Organ. Sci. 12(4):435-449.Link, Google Scholar
[28] Huckman RS , Staats BR , Upton DM (2009) Team familiarity, role experience, and performance: Evidence from Indian software services. Management Sci. 55(1):85-100.Link, Google Scholar
[29] Jaccard P (1912) The distribution of the flora in the alpine zone. 1. New Phytology 11(2):37-50.Crossref, Google Scholar · doi:10.1111/j.1469-8137.1912.tb05611.x
[30] Jones R (2005) Working Virtually: Challenges of Virtual Teams. Jones R, Oyung R, Pace L, eds. Challenges of Virtual Teams (IGI Global, Hershey, PA). Crossref, Google Scholar · doi:10.4018/978-1-59140-585-6
[31] Kargar M , An A (2011) Discovering top-k teams of experts with/without a leader in social networks. Berendt B, de Vries AP, Fan W, Macdonald C, Ruthven IG, eds. Proc. 20th ACM Internat. Conf. Inform. Knowledge Management (ACM, New York), 985-994.Google Scholar
[32] Kargar M , An A , Zihayat M (2012) Efficient bi-objective team formation in social networks. Flach PA, De Bie T, Cristiani N, eds. Joint Eur. Conf. Machine Learn. Knowledge Discovery Databases (Springer, New York), 483-498.Google Scholar
[33] Lappas T , Liu K , Terzi E (2009) Finding a team of experts in social networks. Elder J, Fogelman FS, Flach PA, Zaki MJ, eds. Proc. 15th ACM SIGKDD Internat. Conf. Knowledge Discovery Data Mining (ACM, New York), 467-476.Google Scholar
[34] Loiola EM , de Abreu NMM , Boaventura-Netto PO , Hahn P , Querido T (2007) A survey for the quadratic assignment problem. Eur. J. Oper. Res. 176(2):657-690.Crossref, Google Scholar · Zbl 1103.90058 · doi:10.1016/j.ejor.2005.09.032
[35] Majumder A , Datta S , Naidu K (2012) Capacitated team formation problem on social networks. Yang Q, Agarwal D, Pei, J, eds. Proc. 18th ACM SIGKDD Internat. Conf. Knowledge Discovery Data Mining (ACM, New York), 1005-1013.Google Scholar
[36] Martinelli R , Contardo C (2015) Exact and heuristic algorithms for capacitated vehicle routing problems with quadratic costs structure. INFORMS J. Comput. 27(4):658-676.Link, Google Scholar · Zbl 1338.90059
[37] Mittelmann H , Peng J (2010) Estimating bounds for quadratic assignment problems associated with hamming and manhattan distance matrices based on semidefinite programming. SIAM J. Optim. 20(6):3408-3426.Crossref, Google Scholar · Zbl 1211.90162 · doi:10.1137/090748834
[38] Pandey P , Punnen AP (2017) On a linearization technique for solving the quadratic set covering problem and variations. Optim. Lett. 11(7):1357-1370.Crossref, Google Scholar · Zbl 1381.90073 · doi:10.1007/s11590-016-1081-x
[39] Pisinger WD , Rasmussen AB , Sandvik R (2007) Solution of large quadratic knapsack problems through aggressive reduction. INFORMS J. Comput. 19(2):280-290.Link, Google Scholar · Zbl 1241.90119
[40] Povh J , Rendl F (2009) Copositive and semidefinite relaxations of the quadratic assignment problem. Discrete Optim. 6(3):231-241.Crossref, Google Scholar · Zbl 1167.90597 · doi:10.1016/j.disopt.2009.01.002
[41] Punnen AP , Pandey P , Friesen M (2019) Representations of quadratic combinatorial optimization problems: A case study using quadratic set covering and quadratic knapsack problems. Comput. Oper. Res. 112:104769.Crossref, Google Scholar · Zbl 1458.90503 · doi:10.1016/j.cor.2019.104769
[42] Rodrigues C , Quadri D , Michelon P , Gueye S (2012) 0-1 quadratic knapsack problems: an exact approach based on a t-linearization. SIAM J. Optim. 22(4):1449-1468.Crossref, Google Scholar · Zbl 1277.90087 · doi:10.1137/110820762
[43] Saxena R , Arora S (1997) A linearization technique for solving the quadratic set covering problem. Optim . 39(1):33-42.Crossref, Google Scholar · Zbl 0867.90082 · doi:10.1080/02331939708844269
[44] Wang X , Zhao Z , Ng W (2015) A comparative study of team formation in social networks. Renz M, Shahabi C, Zhou X, Cheema MA, eds. Internat. Conf. Database Systems Advanced Applications (Springer, New York), 389-404.Google Scholar
[45] Wi H , Oh S , Mun J , Jung M (2009) A team formation model based on knowledge and collaboration. Expert Systems Appl. 36(5):9121-9134.Crossref, Google Scholar · doi:10.1016/j.eswa.2008.12.031
[46] Zakarian A , Kusiak A (1999) Forming teams an analytical approach. IIE Trans. 31(1):85-97.Crossref, Google Scholar · doi:10.1080/07408179908969808
[47] Zhang L , Zhang X (2013) Multi-objective team formation optimization for new product development. Comput. Industrial Engrg. 64(3):804-811.Crossref, Google Scholar · doi:10.1016/j.cie.2012.12.015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.