×

A convergent interacting particle method and computation of KPP front speeds in chaotic flows. (English) Zbl 07538279

Summary: In this paper, we study the propagation speeds of reaction-diffusion-advection fronts in time-periodic cellular and chaotic flows with Kolmogorov-Petrovsky-Piskunov (KPP) nonlinearity. We first apply the variational principle to reduce the computation of KPP front speeds to a principal eigenvalue problem of a linear advection-diffusion operator with space-time periodic coefficient on a periodic domain. To this end, we develop efficient Lagrangian particle methods to compute the principal eigenvalue through the Feynman-Kac formula. By estimating the convergence rate of Feynman-Kac semigroups and the operator splitting method for approximating the linear advection-diffusion solution operators, we obtain convergence analysis for the proposed numerical method. Finally, we present numerical results to demonstrate the accuracy and efficiency of the proposed method in computing KPP front speeds in time-periodic cellular and chaotic flows, especially the time-dependent Arnold-Beltrami-Childress flow and time-dependent Kolmogorov flow in three-dimensional space.

MSC:

65-XX Numerical analysis
35K57 Reaction-diffusion equations
47D08 Schrödinger and Feynman-Kac semigroups
65C35 Stochastic particle methods
65L20 Stability and convergence of numerical methods for ordinary differential equations
65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs

References:

[1] B. Audoly, H. Berestycki, and Y. Pomeau, Réaction diffusion en écoulement stationnaire rapide, C. R. Acad. Sci.-Ser. IIB Mechanics Physics Astronomy, 328 (2000), pp. 255-262. · Zbl 0992.76097
[2] A. Bátkai, P. Csomós, B. Farkas, and G. Nickel, Operator splitting for non-autonomous evolution equations, J. Funct. Anal., 260 (2011), pp. 2163-2190. · Zbl 1232.65103
[3] H. Berestycki, F. Hamel, and N. Nadirashvili, The speed of propagation for KPP type problems. I: Periodic framework, J. Eur. Math. Soc. (JEMS), 7 (2005), pp. 173-213. · Zbl 1142.35464
[4] N. Brummell, F. Cattaneo, and S. Tobias, Linear and nonlinear dynamo properties of time-dependent ABC flows, Fluid Dynamics Research, 28 (2001), pp. 237-265.
[5] F. Cérou, P. Del Moral, and A. Guyader, A nonasymptotic theorem for unnormalized Feynman-Kac particle models, Ann. Inst. Henri Poincaré Probab. Stat., 47 (2011), pp. 629-649. · Zbl 1233.60047
[6] C. Chicone and Y. Latushkin, Evolution Semigroups in Dynamical Systems and Differential Equations, Math. Surveys Monogr. 70, AMS, Providence, RI, 1999. · Zbl 0970.47027
[7] S. Childress, Alpha-effect in flux ropes and sheets, Physics Earth Planetary Interiors, 20 (1979), pp. 172-180.
[8] S. Childress and A. D. Gilbert, Stretch, Twist, Fold: The Fast Dynamo, Lecture Notes Physics Monographs 37, Springer, New York, 1995. · Zbl 0841.76001
[9] P. Del Moral, Feynman-Kac formulae, in Feynman-Kac Formulae, Springer, New York, 2004, pp. 47-93. · Zbl 1130.60003
[10] F. Den Hollander, Large Deviations, Fields Inst. Monogr. 14, AMS, Providence, RI, 2008. · Zbl 0949.60001
[11] T. Dombre, U. Frisch, J. M. Greene, M. Henon, A. Mehr, and M. Soward, Chaotic streamlines in the ABC flows, J. Fluid Mech., 167 (1986), pp. 353-391. · Zbl 0622.76027
[12] K. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Corad. Texts in Math. 194, Springer, New York, 1999. · Zbl 0952.47036
[13] G. Ferré and G. Stoltz, Error estimates on ergodic properties of discretized Feynman-Kac semigroups, Numer. Math., 143 (2019), pp. 261-313. · Zbl 1457.65154
[14] R. Fisher, The wave of advance of advantageous genes, Ann. Eugenics, 7 (1937), pp. 355-369. · JFM 63.1111.04
[15] W. Foulkes, L. Mitas, R. Needs, and G. Rajagopal, Quantum Monte Carlo simulations of solids, Rev. Modern Phys., 73 (2001), pp. 33-83.
[16] M. Freidlin, Functional Integration and Partial Differential Equations, Princeton University Press, Princeton, NJ, 1985. · Zbl 0568.60057
[17] D. Galloway and M. Proctor, Numerical calculations of fast dynamos in smooth velocity fields with realistic diffusion, Nature, 356 (1992), pp. 691-693.
[18] J. Gärtner and M. Freidlin, On the propagation of concentration waves in periodic and random media, Dokl. Akad. Nauk, 249 (1979), pp. 521-525. · Zbl 0447.60060
[19] P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Longman, London, 1991. · Zbl 0731.35050
[20] M. Hochbruck and C. Lubich, On Magnus integrators for time-dependent Schrödinger equations, SIAM J. Numer. Anal., 41 (2003), pp. 945-963. · Zbl 1049.65064
[21] M. Hochbruck and A. Ostermann, Exponential integrators, Acta Numer., 19 (2010), pp. 209-286. · Zbl 1242.65109
[22] T. Jahnke and C. Lubich, Error bounds for exponential operator splittings, BIT, 40 (2000), pp. 735-744. · Zbl 0972.65061
[23] T. Kato, Perturbation Theory for Linear Operators, Grundlehren Math. Wiss. 132, Springer, New York, 2013.
[24] A. Kolmogorov, I. Petrovsky, and N. Piskunov, Investigation of the equation of diffusion combined with increasing of the substance and its application to a biology problem, Bull. Moscow State Univ. Ser. A Math. Mech, 1 (1937), pp. 1-25.
[25] J. Lyu, Z. Wang, J. Xin, and Z. Zhang, Convergence analysis of stochastic structure-preserving schemes for computing effective diffusivity in random flows, SIAM J. Numer. Anal., 58 (2020), pp. 3040-3067. · Zbl 1509.37120
[26] A. Majda and P. Souganidis, Large scale front dynamics for turbulent reaction-diffusion equations with separated velocity scales, Nonlinearity, 7 (1994), pp. 1-30. · Zbl 0839.76093
[27] S. Meyn and R. L. Tweedie, Stochastic Stability of Markov Chains, Springer, New York, 1992. · Zbl 0757.60061
[28] G. Milstein, G. John, and S. Vladimir, Transition density estimation for stochastic differential equations via forward-reverse representations, Bernoulli, 10, pp. 281-312. · Zbl 1085.62098
[29] P. D. Moral and A. Guionnet, On the stability of interacting processes with applications to filtering and genetic algorithms, Ann. Inst. Henri Poincaré Probab. Stat., 37 (2001), pp. 155-194. · Zbl 0990.60005
[30] P. D. Moral and L. Miclo, Branching and interacting particle systems approximations of Feynman-Kac formulae with applications to non-linear filtering, in Seminaire de probabilites XXXIV, Springer, New York, 2000, pp. 1-145. · Zbl 0963.60040
[31] J. Nolen, J. Roquejoffre, L. Ryzhik, and A. Zlatoš, Existence and non-existence of Fisher-KPP transition fronts, Arch. Ration. Mech. Anal., 203 (2012), pp. 217-246. · Zbl 1267.35108
[32] J. Nolen, M. Rudd, and J. Xin, Existence of KPP fronts in spatially-temporally periodic advection and variational principle for propagation speeds, Dyn. Partial Differ. Equ., 2 (2005), pp. 1-24. · Zbl 1179.35166
[33] J. Nolen and J. Xin, Reaction-diffusion front speeds in spatially-temporally periodic shear flows, Multiscale Model. Simul., 1 (2003), pp. 554-570. · Zbl 1053.35068
[34] J. Nolen and J. Xin, Computing reactive front speeds in random flows by variational principle, Phys. D, 237 (2008), pp. 3172-3177. · Zbl 1155.76061
[35] J. Nolen and J. Xin, Asymptotic spreading of KPP reactive fronts in incompressible space-time random flows, Ann Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), pp. 815-839. · Zbl 1177.35172
[36] A. Novikov and L. Ryzhik, Boundary layers and KPP fronts in a cellular flow, Arch. Ration. Mech. Anal., 184 (2007), pp. 23-48. · Zbl 1109.76064
[37] L. Ryzhik and A. Zlatoš, KPP pulsating front speed-up by flows, Commun. Math. Sci., 5 (2007), pp. 575-593. · Zbl 1152.35055
[38] R. Schnaubelt, Well-posedness and asymptotic behaviour of non-autonomous linear evolution equations, in Evolution Equations, Semigroups and Functional Analysis, Springer, New York, 2002, pp. 311-338. · Zbl 1044.34016
[39] J. Shen, T. Tang, and L. Wang, Spectral Methods: Algorithms, Analysis and Applications, Springer Ser. Comput. Math. 41, Springer, New York, 2011. · Zbl 1227.65117
[40] L. Shen, J. Xin, and A. Zhou, Finite element computation of KPP front speeds in 3D cellular and ABC flows, Math. Model. Natural Phenomena, 8 (2013), pp. 182-197. · Zbl 1416.65465
[41] L. Shen, J. Xin, and A. Zhou, Finite element computation of KPP front speeds in cellular and cat’s eye flows, J. Sci. Comput., 55 (2013), pp. 455-470. · Zbl 1366.76055
[42] H. Stewart, Generation of analytic semigroups by strongly elliptic operators, Trans. Amer. Math. Soc., 199 (1974), pp. 141-162. · Zbl 0264.35043
[43] Z. Wang, J. Xin, and Z. Zhang, Computing effective diffusivity of chaotic and stochastic flows using structure-preserving schemes, SIAM J. Numer. Anal., 56 (2018), pp. 2322-2344. · Zbl 1404.65209
[44] Z. Wang, J. Xin, and Z. Zhang, DeepParticle: Learning Invariant Measure by a Deep Neural Network Minimizing Wasserstein Distance on Data Generated from an Interacting Particle Method, https://arxiv.org/abs/2111.01356, 2021.
[45] Z. Wang, J. Xin, and Z. Zhang, Sharp uniform in time error estimate on a stochastic structure-preserving Lagrangian method and computation of effective diffusivity in 3D chaotic flows, SIAM Multiscale Model. Simul, 19 (2021), pp. 1167-1189. · Zbl 1496.65192
[46] J. Xin, Existence of planar flame fronts in convective-diffusive periodic media, Arch. Ration. Mech. Anal., 121 (1992), pp. 205-233. · Zbl 0764.76074
[47] J. Xin, Front propagation in heterogeneous media, SIAM Rev., 42 (2000), pp. 161-230. · Zbl 0951.35060
[48] J. Xin, An Introduction to Fronts in Random Media, Surv. Tutor. Appl. Math. Sci. 5, 2009. · Zbl 1188.35003
[49] P. Zu, L. Chen, and J. Xin, A computational study of residual KPP front speeds in time-periodic cellular flows in the small diffusion limit, Phys. D, Springer, New York, 311 (2015), pp. 37-44. · Zbl 1364.76105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.