×

Confidence interval estimation of the youden index and corresponding cut-point for a combination of biomarkers under normality. (English) Zbl 07532287

Summary: In prognostic/diagnostic medical research, it is often the goal to identify a biomarker that differentiates between patients with and without a condition, or patients that will have good or poor response to a given treatment. The statistical literature is abundant with methods for evaluating single biomarkers for these purposes. However, in practice, a single biomarker rarely captures all aspects of a disease process; therefore, it is often the case that using a combination of biomarkers will improve discriminatory ability. A variety of methods have been developed for combining biomarkers based on the maximization of some global measure or cost-function. These methods usually create a score based on a linear combination of the biomarkers, upon which the standard single biomarker methodologies (such as the Youden’s index) are applied. However, these single biomarker methodologies do not account for the multivariable nature of the combined biomarker score. In this article we present generalized inference and bootstrap approaches to estimating confidence intervals for the Youden’s index and corresponding cut-point for a combined biomarker. These methods account for inherent dependencies and provide accurate and efficient estimates. A simulation study and real-world example utilize data from a Duchene Muscular Dystrophy study are also presented.

MSC:

62-XX Statistics

References:

[1] Cox, L.; Johnson, M.; Kafadar, K., Exposition of statistical graphics technology, ASA Proceedings of the Statistical Computation Section, 55-56 (1982)
[2] Efron, B.; Tibshirani, R., Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy, Statistical Science, 1, 1, 54-77 (1986) · Zbl 0955.62560 · doi:10.1214/ss/1177013815
[3] Esteban, L. M.; Sanz, G.; Borque, A., A step-by-step algorithm for combining diagnostic tests, Journal of Applied Statistics, 38, 5, 899-911 (2011) · Zbl 1511.62331 · doi:10.1080/02664761003692373
[4] Fluss, R.; Faraggi, D.; Reiser, B., Estimation of the Youden Index and its associated cutoff point, Biometrical Journal, 47, 4, 458-72 (2005) · Zbl 1442.62359 · doi:10.1002/bimj.200410135
[5] Gao, F.; Xiong, C.; Yan, Y.; Yu, K.; Zhang, Z., Estimating optimum linear combination of multiple correlated diagnostic tests at a fixed specificity with receiver operating characteristic curves, Journal of Data Science, 6, 1-13 (2008)
[6] Kang, L.; Liu, A.; Tian, L., Linear combination methods to improve diagnostic/prognostic accuracy on future observations, Statistical Methods in Medical Research, 25, 4, 1359-80 (2016) · doi:10.1177/0962280213481053
[7] Krishnamoorthy, K.; Lin, Y.; Xia, Y., Confidence limits and prediction limits for a Weibull distribution based on the generalized variable approach, Journal of Statistical Planning and Inference, 139, 8, 2675-84 (2009) · Zbl 1162.62018 · doi:10.1016/j.jspi.2008.12.010
[8] Krishnamoorthy, K.; Mathew, T., Inferences on the means of lognormal distributions using generalized p-values and generalized confidence intervals, Journal of Statistical Planning and Inference, 115, 1, 103-21 (2003) · Zbl 1041.62023 · doi:10.1016/S0378-3758(02)00153-2
[9] Lai, C. Y.; Tian, L.; Schisterman, E., Exact confidence interval estimation for the Youden index and its corresponding optimal cut-point, Computational Statistics & Data Analysis, 56, 5, 1103-14 (2012) · Zbl 1464.62109 · doi:10.1016/j.csda.2010.11.023
[10] Li, C.; Liao, C.; Liu, J., On the exact interval estimation for the difference in paired areas under the ROC curves, Statistics in Medicine, 27, 2, 224-42 (2008) · doi:10.1002/sim.2760
[11] Lin, S. H.; Lee, J. C.; Wang, R. S., Generalized inferences on the common mean vector of several multivariate normal populations, Journal of Statistical Planning and Inference, 137, 7, 2240-9 (2007) · Zbl 1120.62041 · doi:10.1016/j.jspi.2006.07.005
[12] Obuchowski, N., Fundamentals of clinical research for radiologists: ROC analysis, American Journal of Roentgenology, 184, 2, 364-72 (2005) · doi:10.2214/ajr.184.2.01840364
[13] Perkins, N. J.; Schisterman, E. F., The inconsistency of “optimal” cutpoints obtained using two criteria based on receiver operating characteristic curve, American Journal of Epidemiology, 163, 7, 670-5 (2006) · doi:10.1093/aje/kwj063
[14] Perkins, N. J.; Schisterman, E. F.; Vexler, A., Multivariate normally distributed biomarkers subject to limits of detection and receiver operating characteristics curve inference, Academic Radiology, 20, 7, 838-46 (2013) · doi:10.1016/j.acra.2013.04.001
[15] Pepe, M. S.; Janes, H.; Longton, G.; Leisenring, W.; Newcomb, P., Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker, American Journal of Epidemiology, 159, 9, 882-90 (2004) · doi:10.1093/aje/kwh101
[16] Pepe, M. S.; Thompson, M. L., Combining diagnostic test results to increase accuracy, Biostatistics, 1, 2, 123-40 (2000) · Zbl 0959.62109 · doi:10.1093/biostatistics/1.2.123
[17] Reiser, B., Measuring the effectiveness of diagnostic markers in the presences of measurement error through the use of ROC curves, Statistics in Medicine, 19, 16, 2115-29 (2000) · doi:10.1002/1097-0258(20000830)19:16<2115::AID-SIM529>3.0.CO;2-M
[18] Schisterman, E. F.; Perkins, N.; Liu, A.; Bondell, H., Confidence intervals for the Youden index and corresponding optimal cut-point, Communications in Statistics - Simulation and Computation, 36, 3, 549-63 (2007) · Zbl 1121.62101 · doi:10.1080/03610910701212181
[19] Su, J. Q.; Liu, J. S., Linear combination of multiple diagnostic markers, Journal of the American Statistical Association, 88, 424, 1350-5 (1993) · Zbl 0792.62099 · doi:10.1080/01621459.1993.10476417
[20] Tian, L., Confidence interval estimation of partial area under curve based on combined biomarkers, Computational Statistics & Data Analysis, 54, 2, 466-72 (2010) · Zbl 1465.62022 · doi:10.1016/j.csda.2009.09.016
[21] Tian, L.; Cappelleri, J. C., A new approach for interval estimation and hypothesis testing of a certain intraclass correlation coefficient: The generalized variable method, Statistics in Medicine, 23, 13, 2125-35 (2004) · doi:10.1002/sim.1782
[22] Tian, L.; Wilding, G. E., Confidence interval estimation of a common correlation coefficient, Computational Statistics & Data Analysis, 52, 10, 4872-7 (2008) · Zbl 1452.62401 · doi:10.1016/j.csda.2008.04.002
[23] Wang, Z.; Chang, Y.-C I., Marker selection via maximizing the partial area under the ROC curve of linear risk scores, Biostatistics, 12, 2, 369-85 (2011) · Zbl 1437.62653 · doi:10.1093/biostatistics/kxq052
[24] Weerahandi, S., Generalized confidence intervals, Journal of the American Statistical Association, 88, 423, 899-905 (1993) · Zbl 0785.62029 · doi:10.1080/01621459.1993.10476355
[25] Weerahandi, S., Generalized inference in repeated measures: Exact methods in MANOVA and mixed models (2004), New York: Wiley, New York · Zbl 1057.62041
[26] Wuertz, D.; Setz, T.; Chalabi, Y., fMultivar: Rmetrics - Analysing and modeling multivariate financial return distributions (2017)
[27] Yan, L.; Tian, L.; Liu, S., Combining large number of weak biomarkers based on AUC, Statistics in Medicine, 34, 29, 3811-34 (2015) · doi:10.1002/sim.6600
[28] Yin, J.; Tian, L., Generalized inference confidence band for binormal ROC curve, Statistics in Biopharmaceutical Research, 8, 1, 22-3830 (2016) · doi:10.1080/19466315.2015.1093957
[29] Yin, J.; Tian, L., Optimal linear combinations of multiple diagnostic biomarkers based on Youden index, Statistics in Medicine, 33, 8, 1426-40 (2014) · doi:10.1002/sim.6046
[30] Youden, W. J., An index for rating diagnostic tests, Cancer, 3, 1, 32-5 (1950) · doi:10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.