×

Non symmetric Rosenblatt process over a compact. (English) Zbl 07532212

Summary: In this short note, we give the representation of the non symmetric Rosenblatt process as a Wiener-Itô multiple integral with respect to the Brownian motion on a finite interval. Based on this representation, we obtain a least square-type estimator for an unknown parameter of the drift coefficient of a simple model driven by the non symmetric Rosenblatt process.

MSC:

60G18 Self-similar stochastic processes
60G12 General second-order stochastic processes
62M86 Inference from stochastic processes and fuzziness
62-XX Statistics
Full Text: DOI

References:

[1] Bai, S.; Taqqu, M. S., Generalized Hermite processes, discrete chaos and limit theorems, Stochastic Processes and Their Applications, 124, 4, 1710-39 (2014) · Zbl 1282.60043 · doi:10.1016/j.spa.2013.12.011
[2] Bai, S.; Taqqu, M. S., Behavior of the generalized Rosenblatt process at extreme critical exponent values, The Annals of Probability, 45, 2, 1278-324 (2017) · Zbl 1392.60026 · doi:10.1214/15-AOP1087
[3] Bell, D.; Nualart, D., Noncentral limit theorem for the generalized Hermite process, Electronic Communications in Probability, 22, 13 (2017) · Zbl 1386.60190 · doi:10.1214/17-ECP99
[4] Bertin, K.; Torres, S.; Tudor, C. A., Drift parameter estimation in fractional diffusions driven by perturbed random walks, Statistics & Probability Letters, 81, 2, 243-9 (2011) · Zbl 1233.62148 · doi:10.1016/j.spl.2010.10.003
[5] Embrechts, P.; Maejima, M., Selfsimilar processes (2002), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 1008.60003
[6] Kleinow, T.; Hall, P.; Hardle, W.; Schmidt, P., Semiparametric bootstrap approach to hypothesis tests and confidence intervals for the Hurst coefficient, Statistical Inference for Stochastic Processes, 3, 263-76 (2000) · Zbl 0981.62035
[7] Maejima, M.; Tudor, C. A., On the distribution of the Rosenblatt process, Statistics & Probability Letters, 43, 1490-5 (2012) · Zbl 1287.60024 · doi:10.1016/j.spl.2013.02.019
[8] Maejima, M.; Tudor, C. A., Selfsimilar processes with stationary increments in the second wiener chaos, Probability and Mathematical Statistics, 32, 1, 167-86 (2012) · Zbl 1261.60041
[9] Mishura, Y., Lecture notes in Mathematics, 1929, Stochastic calculus for fractional Brownian motion and related processes (2008), Berlin: Springer-Verlag, Berlin · Zbl 1138.60006
[10] Nualart, D., The Malliavin calculus and related topics (1995), New York: Springer-Verlag, New York · Zbl 0837.60050
[11] Pipiras, V.; Taqqu, M. S., Regularization and integral representations of Hermite processes, Statistics & Probability Letters, 80, 23, 2014-23 (2010) · Zbl 1216.60029 · doi:10.1016/j.spl.2010.09.008
[12] Prakasa Rao, B. L. S., Statistical inference for diffusion type processes: Kendall’s library of statistics 8 (2010), New York, NY: Wiley, New York, NY · Zbl 1211.62143
[13] Samorodnitsky, G.; Taqqu, M., Stable non-Gaussian random processes: Stochastic models with infinite variance (1994), London: Chapman and Hall, London · Zbl 0925.60027
[14] Taqqu, M. S., Weak convergence to fractional Brownian motion and to the Rosenblatt process, Zeitschrift für Wahrscheinlichkeitstheorie Und Verwandte Gebiete, 31, 4, 287-302 (1975) · Zbl 0303.60033 · doi:10.1007/BF00532868
[15] Taqqu, M. S., Dependence in probability and statistics, A bibliographical guide to self-similar processes and long-range dependence, 137-62 (1986), Boston, MA: Birkhauser, Boston, MA · Zbl 0596.60054
[16] Tudor, C. A., Analysis of the Rosenblatt process, ESAIM: Probability and Statistics, 12, 230-57 (2008) · Zbl 1187.60028 · doi:10.1051/ps:2007037
[17] Tudor, C. A., Analysis of variations for self-similar processes. A stochastic calculus approach. Probability and its applications (2013), Cham: Springer, Cham · Zbl 1308.60004
[18] Wu, W. B., Unit root testing for functionals of linear processes, Econometric Theory, 22, 1-14 (2005) · Zbl 1083.62098 · doi:10.1017/S0266466606060014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.