×

Magnetized peristaltic particle-fluid propulsion with Hall and ion slip effects through a permeable channel. (English) Zbl 07526331

Summary: In this article, combine impacts of the Hall and ion slip with heat exchange on the peristaltic movement of MHD particle-fluid suspension through a permeable channel have been examined. The representing flow issue for the liquid stage and dusty stage have been displayed with the assistance of long wavelength and disregarding the inertial forces. Correct arrangements are gotten for velocity and temperature profile. The effect of all the applicable parameters, for example, particle volume fraction, Hartmann number, ion slip parameter, Hall parameter, Darcy number, Prandtl number, Eckert number, are portrayed for velocity and temperature profile. It is observed that the velocity profile appears inverse close to the qualities for bigger estimations of the Darcy parameter, however, it diminishes because of Hartmann number and particle volume fraction. Moreover, the behavior of velocity profile stays comparative for hall and ion slip parameter. The Darcy parameter also shows significant resistance to the temperature profile.

MSC:

82-XX Statistical mechanics, structure of matter
Full Text: DOI

References:

[1] Liu, J.; Zhu, C.; Fu, T.; Ma, Y.; Li, H., Numerical simulation of the interactions between three equal-interval parallel bubbles rising in non-Newtonian fluids, Chem. Eng. Sci., 93, 55-66 (2013)
[2] Hu, Z., Developments of analyses on grid-to-rod fretting problems in pressurized water reactors, Prog. Nucl. Energy, 106, 293-299 (2018)
[3] Tlili, I.; Bhatti, M. M.; Hamad, S. M.; Barzinjy, A. A.; Sheikholeslami, M.; Shafee, A., Macroscopic modeling for convection of hybrid nanofluid with magnetic effects, Physica A, 534, Article 122136 pp. (2019) · Zbl 07570663
[4] Animasaun, I. L.; Mahanthesh, B.; Jagun, A. O.; Bankole, T. D.; Sivaraj, R.; Shah, N. A.; Saleem, S., Significance of Lorentz force and thermoelectric on the flow of 29 nm CuO-water nanofluid on an upper horizontal surface of a paraboloid of revolution, J. Heat Transfer, 141, 2, Article 022402 pp. (2019)
[5] Animasaun, I. L.; Koriko, O. K.; Adegbie, K. S.; Babatunde, H. A.; Ibraheem, R. O.; Sandeep, N.; Mahanthesh, B., Comparative analysis between 36 nm and 47 nm alumina-water nanofluid flows in the presence of Hall effect, J. Therm. Anal. Calorim., 135, 2, 873-886 (2019)
[6] Latham, T. W., Fluid Motions in a Peristaltic Pump (1966), MIT, (M.Sc thesis)
[7] Ellahi, R.; Hussain, F., Simultaneous effects of MHD and partial slip on peristaltic flow of jeffery fluid in a rectangular duct, J. Magn. Magn. Mater., 393, 284-292 (2015)
[8] Zeeshan, A.; Bhatti, M. M.; Akbar, N. S.; Sajjad, Y., Hydromagnetic blood flow of sisko fluid in a non-uniform channel induced by peristaltic wave, Commun. Theor. Phys., 68, 1, 103 (2017) · Zbl 1370.76203
[9] Khan, A. A.; Masood, F.; Ellahi, R.; Bhatti, M. M., Mass transport on chemicalized fourth-grade fluid propagating peristaltically through a curved channel with magnetic effects, J. Molecular Liquids, 258, 186-195 (2018)
[10] Ellahi, R.; Zeeshan, A.; Hussain, F.; Asadollahi, A., Peristaltic blood flow of couple stress fluid suspended with nanoparticles under the influence of chemical reaction and activation energy, Symmetry, 11, 2, 276 (2019) · Zbl 1416.92089
[11] Mekheimer, K. S.; El Shehawey, E. F.; Elaw, A. M., Peristaltic motion of a particle-fluid suspension in a planar channel, Internat. J. Theoret. Phys., 37, 2895-2920 (1998) · Zbl 0974.76601
[12] Nagarani, P.; Sarojamma, G., Peristaltic transport of small particles-power law fluid suspension in a channel, Australas, Phys. Eng. S., 30, 185-193 (2007)
[13] Mekheimer, K. S.; Abd Elmaboud, Y.; Abdellateef, A. I., Particulate suspension flow induced by sinusoidal peristaltic waves through eccentric cylinders: thread annular, Int. J. Biomath., 6, Article 1350026 pp. (2013) · Zbl 1280.76062
[14] Mekheimer, K. S.; Mohamed, M. S., Peristaltic transport of a pulsatile flow for a particle-fluid suspension through a annular region: Application of a clot blood model, Int. J. Sci. Eng. Res., 5, 849-859 (2014)
[15] Bhatti, M. M.; Zeeshan, A.; Ijaz, N., Slip effects and endoscopy analysis on blood flow of particle-fluid suspension induced by peristaltic wave, J. Mol. Liq., 218, 240-245 (2016)
[16] Connington, K.; Kang, Q.; Viswanathan, H.; Abdel-Fattah, A.; Chen, S., Peristaltic particle transport using the lattice Boltzmann method, Phys. Fluids, 21, Article 053301 pp. (2009) · Zbl 1183.76156
[17] Muhammad, T.; Lu, D. C.; Mahanthesh, B.; Eid, M. R.; Ramzan, M.; Dar, A., Significance of Darcy-Forchheimer porous medium in nanofluid through carbon nanotubes, Commun. Theor. Phys., 70, 3, 361 (2018)
[18] Ijaz, N.; Zeeshan, A.; Bhatti, M. M.; Ellahi, R., Analytical study on liquid-solid particles interaction in the presence of heat and mass transfer through a wavy channel, J. Molecular Liquids, 250, 80-87 (2018)
[19] Zeeshan, A.; Ijaz, N.; Bhatti, M. M.; Mann, A. B., Mathematical study of peristaltic propulsion of solid-liquid multiphase flow with a biorheological fluid as the base fluid in a duct, Chinese J. Phys., 55, 4, 1596-1604 (2017)
[20] Bhatti, M. M.; Zeeshan, A.; Ellahi, R.; Shit, G. C., Mathematical modeling of heat and mass transfer effects on MHD peristaltic propulsion of two-phase flow through a Darcy-Brinkman-Forchheimer porous medium, Adv. Powder Technol., 29, 5, 1189-1197 (2018)
[21] Mekheimer, K. S.; Husseny, S. Z.A.; Elmaboud, Y. A., Effects of heat transfer and space porosity on peristaltic flow in a vertical asymmetric channel, Numer. Method D, 26, 747-770 (2010) · Zbl 1267.76108
[22] Hayat, T.; Hina, S., The influence of wall properties on the MHD peristaltic flow of a Maxwell fluid with heat and mass transfer, Nonlinear Anal-Real., 11, 3155-3169 (2010) · Zbl 1194.35328
[23] Hayat, T.; Hina, S.; Hendi, A. A.; Asghar, S., Effect of wall properties on the peristaltic flow of a third grade fluid in a curved channel with heat and mass transfer, Int. J. Heat Mass Trans., 54, 5126-5136 (2011) · Zbl 1226.80012
[24] Ellahi, R.; Bhatti, M. M.; Vafai, K., Effects of heat and mass transfer on peristaltic flow in a non-uniform rectangular duct, Int. J. Heat Mass Trans., 71, 706-719 (2014)
[25] Ellahi, R.; Bhatti, M. M.; Pop, I., Effects of hall and ion slip on MHD peristaltic flow of Jeffrey fluid in a non-uniform rectangular duct, Internat. J. Numer. Methods Heat Fluid Flow, 26, 6, 1802-1820 (2016) · Zbl 1356.76426
[26] Mekheimer, K. S.; Salem, A. M.; Zaher, A. Z., Peristatcally induced MHD slip flow in a porous medium due to a surface acoustic wavy wall, J. Egypt. Math. Soc., 22, 143-151 (2014) · Zbl 1291.76314
[27] Nowar, K., Peristaltic flow of a nanofluid under the effect of Hall current and porous medium, Math. Probl. Eng., 2014 (2014) · Zbl 1407.76152
[28] Abo-Eldahab, E. M.; Barakat, E. I.; Nowar, K. I., Hall currents and ion-slip effects on the MHD peristaltic transport, Int. J. Appl. Math. Phys., 2, 113-123 (2010)
[29] Abo-Eldahab, E. M.; Barakat, E. I.; Nowar, K. I., Effects of Hall and ion-slip currents on peristaltic transport of a couple stress fluid, Int. J. Appl. Math. Phys., 2, 145-157 (2010)
[30] Hsiao, K. L., To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using Carreau-Nanofluid with parameters control method, Energy, 130, 486-499 (2017)
[31] Hsiao, K. L., Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature, Int. J. Heat Mass Transfer, 112, 983-990 (2017)
[32] Abdelsalam, S. I.; Bhatti, M. M., The study of non-Newtonian nanofluid with hall and ion slip effects on peristaltically induced motion in a non-uniform channel, RSC Adv., 8, 15, 7904-7915 (2018)
[33] Abdelsalam, S.; Bhatti, M. M.; Zeeshan, A.; Riaz, A.; Beg, O. A., Metachronal propulsion of a magnetized particle-fluid suspension in a ciliated channel with heat and mass transfer, Phys. Scr. (2019)
[34] Tam, C. K.W., The drag on a cloud of spherical particles in low Reynolds number flow, J. Fluid Mech., 38, 537-546 (1969) · Zbl 0184.52701
[35] Charm, S. E.; Kurland, G. S., Blood Flow and Microcirculation (1974), Wiley: Wiley New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.