×

Bayesian semiparametric modelling of phase-varying point processes. (English) Zbl 07524979

Summary: We propose a Bayesian semiparametric approach for registration of multiple point processes. Our approach entails modelling the mean measures of the phase-varying point processes with a Bernstein-Dirichlet prior, which induces a prior on the space of all warp functions. Theoretical results on the support of the induced priors are derived, and posterior consistency is obtained under mild conditions. Numerical experiments suggest a good performance of the proposed methods, and a climatology real-data example is used to showcase how the method can be employed in practice.

MSC:

62-XX Statistics

Software:

fda (R)

References:

[1] Agueh, M. & Carlier, G. (2011). Barycenters in the Wasserstein space. Soc. Ind. Appl. Math. 43, 904-924. · Zbl 1223.49045
[2] Barrientos, A. F., Jara, A. & Quintana, F. A. (2017). Fully nonparametric regression for bounded data using dependent Bernstein polynomials. J. Am. Statist. Assoc. 112, 806-825.
[3] Boissard, E., Le Gouic, T. & Loubes, J.-M. (2015). Distribution’s template estimate with Wasserstein metrics. Bernoulli 21, 740-759. · Zbl 1320.62107
[4] Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Stat. 1, 209-230. · Zbl 0255.62037
[5] Ghosal, S., Ghosh, J. K. & Ramamoorthi, R. (1999). Consistent semiparametric Bayesian inference about a location parameter. J. Statist. Plann. Inf. 77, 181-193. · Zbl 1054.62528
[6] Ghosal, S. & van der Vaart, A. W. (2017). Fundamentals of Nonparametric Bayesian Inference. Cambridge University Press, Cambridge. · Zbl 1376.62004
[7] Karr, A. F. (1991). Point Processes and Their Statistical Inference. Probability: Pure and Applied. New York: Dekker, 2nd ed. · Zbl 0733.62088
[8] Koenker, R. (2005). Quantile Regression. Cambridge, MA: Cambridge University Press. · Zbl 1111.62037
[9] Lehmann, E. L. & Romano, J. P. (2006). Testing Statistical Hypotheses. New York: Springer.
[10] Marron, J. S., Ramsay, J. O., Sangalli, L. M. & Srivastava, A. (2015). Functional data analysis of amplitude and phase variation. Statist. Science 30, 468-484. · Zbl 1426.62146
[11] Menzel, A. & Fabian, P. (1999). Growing season extended in Europe. Nature 397, 659.
[12] Panaretos, V. M. & Zemel, Y. (2016). Amplitude and phase variation of point processes. Ann. Stat. 44, 771-812. · Zbl 1381.62261
[13] Panaretos, V. M. & Zemel, Y. (2019). Statistical aspects of Wasserstein distances. Annu. Rev. Stat. Appl. 6, 405-431.
[14] Petrone, S. (1999). Bayesian density estimation using Bernstein polynomials. Canadian J. Statist. 27, 105-126. · Zbl 0929.62044
[15] Petrone, S. (1999). Random Bernstein polynomials. Scandinavian J. Statist. 26, 373-393. · Zbl 0939.62046
[16] Petrone, S. & Wasserman, L. (2002). Consistency of Bernstein polynomial posteriors. J. Royal Statist. Soc., Ser. B 64, 79-100. · Zbl 1015.62033
[17] Peyré, G. & Cuturi, M. (2019). Computational optimal transport: With applications to data science. Foundations and Trends R◯ in Machine Learning 11, 355-607.
[18] Ramsay, J. O. & Silverman, B. W. (2002). Applied Functional Data Analysis: Methods and Case Studies, New York: Springer. · Zbl 1011.62002
[19] Ramsay, J. O. & Silverman, B. W. (2005). Functional Data Analysis. New York: Springer, 2nd ed. · Zbl 1079.62006
[20] Santambrogio, F. (2015). Optimal Transport for Applied Mathematicians. Basel: Birkäuser. · Zbl 1401.49002
[21] Schwartz, M. D., Ahas, R. & Aasa, A. (2006). Onset of spring starting earlier across the Northern Hemisphere. Global Change Bio. 12, 343-351.
[22] Tang, R. & Müller, H.-G. (2008). Pairwise curve synchronization for functional data. Biometrika 95, 875-889. · Zbl 1437.62625
[23] Wang, J.-L., Chiou, J.-M. & Müller, H.-G. (2016). Functional data analysis. Annu. Rev. Stat. Appl. 3, 257-295.
[24] Wu, S., Müller, H. & Zhang, Z. (2013). Functional data analysis for point processes with rare events. Statistica Sinica 23, 1-23. · Zbl 1259.62076
[25] Wu, W. & Srivastava, A. (2014). Analysis of spike train data: Alignment and comparisons using the extended Fisher-Rao metric. Electron. J. Stat. 8, 1776-1785. · Zbl 1305.62334
[26] Zemel, Y. & Panaretos, V. M. (2019). Fréchet Means and Procrustes Analysis in Wasserstein Space. Bernoulli 25, 932-976. · Zbl 1431.62132
[27] Zheng, Y., Zhu, J. & Roy, A. (2009). Nonparametric Bayesian inference for the spectral density function of a random field. Biometrika 97, 238-245. · Zbl 1182.62070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.