×

Modeling and simulation of cell nuclear architecture reorganization process. (English) Zbl 07524801

Summary: We develop a special phase field/diffusive interface method to model the nuclear architecture reorganization process. In particular, we use a Lagrange multiplier approach in the phase field model to preserve the specific physical and geometrical constraints for the biological events. We develop several efficient and robust linear and weakly nonlinear schemes for this new model. To validate the model and numerical methods, we present ample numerical simulations which in particular reproduce several processes of nuclear architecture reorganization from the experiment literature.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
92Cxx Physiological, cellular and medical topics
35Kxx Parabolic equations and parabolic systems

Software:

Chrom3D

References:

[1] Alberts, Bruce; Bray, Dennis; Hopkin, Karen; Johnson, Alexander D.; Lewis, Julian; Raff, Martin; Roberts, Keith; Walter, Peter, Essential Cell Biology (2015), Garland Science
[2] Chen, Long Qing; Shen, Jie, Applications of semi-implicit Fourier-spectral method to phase field equations, Comput. Phys. Commun., 108, 2-3, 147-158 (1998) · Zbl 1017.65533
[3] Cheng, Qing; Liu, Chun; Shen, Jie, A new interface capturing method for Allen-Cahn type equations based on a flow dynamic approach in Lagrangian coordinates, I. One-dimensional case, J. Comput. Phys., 419, Article 109509 pp. (2020) · Zbl 07507218
[4] Cheng, Qing; Shen, Jie, Multiple scalar auxiliary variable (MSAV) approach and its application to the phase-field vesicle membrane model, SIAM J. Sci. Comput., 40, 6, A3982-A4006 (2018) · Zbl 1403.65045
[5] Cheng, Qing; Shen, Jie, Global constraints preserving SAV schemes for gradient flows, SIAM J. Sci. Comput. (2019)
[6] Cremer, Thomas; Cremer, Christoph, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet., 2, 4, 292-301 (2001)
[7] Cremer, Thomas; Cremer, Marion, Chromosome territories, Cold Spring Harb. Perspect. Biol., 2, 3, Article a003889 pp. (2010)
[8] Cremer, Thomas; Cremer, Marion; Dietzel, Steffen; Müller, Stefan; Solovei, Irina; Fakan, Stanislav, Chromosome territories-a functional nuclear landscape, Curr. Opin. Cell Biol., 18, 3, 307-316 (2006)
[9] Du, Qiang; Lin, Fanghua, Numerical approximations of a norm-preserving gradient flow and applications to an optimal partition problem, Nonlinearity, 22, 1, 67-83 (December 2008) · Zbl 1157.65401
[10] Du, Qiang; Liu, Chun; Ryham, Rolf; Wang, Xiaoqiang, Energetic variational approaches in modeling vesicle and fluid interactions, Physica D Nonlinear Phenom., 238, 9, 923-930 (May 2009) · Zbl 1183.74056
[11] Du, Qiang; Liu, Chun; Wang, Xiaoqiang, Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions, J. Comput. Phys., 212, 2, 757-777 (March 2006) · Zbl 1086.74024
[12] Erdel, Fabian; Rippe, Karsten, Formation of chromatin subcompartments by phase separation, Biophys. J., 114, 10, 2262-2270 (2018)
[13] Feng, Xiaobing; Prohl, Andreas, Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows, Numer. Math., 94, 1, 33-65 (2003) · Zbl 1029.65093
[14] Guan, Zhen; Lowengrub, John; Wang, Cheng, Convergence analysis for second-order accurate schemes for the periodic nonlocal Allen-Cahn and Cahn-Hilliard equations, Math. Methods Appl. Sci., 40, 18, 6836-6863 (2017) · Zbl 1387.65087
[15] Guan, Zhen; Lowengrub, John S.; Wang, Cheng; Wise, Steven M., Second order convex splitting schemes for periodic nonlocal Cahn-Hilliard and Allen-Cahn equations, J. Comput. Phys., 277, 48-71 (2014) · Zbl 1349.65298
[16] Gürsoy, Gamze; Xu, Yun; Kenter, Amy L.; Liang, Jie, Spatial confinement is a major determinant of the folding landscape of human chromosomes, Nucleic Acids Res., 42, 13, 8223-8230 (2014)
[17] Gürsoy, Gamze; Xu, Yun; Kenter, Amy L.; Liang, Jie, Computational construction of 3D chromatin ensembles and prediction of functional interactions of alpha-globin locus from 5C data, Nucleic Acids Res., 45, 20, 11547-11558 (2017)
[18] Gürsoy, Gamze; Xu, Yun; Liang, Jie, Spatial organization of the budding yeast genome in the cell nucleus and identification of specific chromatin interactions from multi-chromosome constrained chromatin model, PLoS Comput. Biol., 13, 7, Article e1005658 pp. (2017)
[19] Jing, Xiaobo; Wang, Qi, Linear second order energy stable schemes for phase field crystal growth models with nonlocal constraints, Comput. Math. Appl., 79, 3, 764-788 (2020) · Zbl 1443.82010
[20] Joshi, Vaibhav; Jaiman, Rajeev K., A positivity preserving and conservative variational scheme for phase-field modeling of two-phase flows, J. Comput. Phys., 360, 137-166 (2018) · Zbl 1391.76651
[21] Kapustina, Maryna; Tsygankov, Denis; Zhao, Jia; Wessler, Timothy; Yang, Xiaofeng; Chen, Alex; Roach, Nathan; Elston, Timothy C.; Wang, Qi; Jacobson, Ken, Modeling the excess cell surface stored in a complex morphology of bleb-like protrusions, PLoS Comput. Biol., 12, 3, Article e1004841 pp. (2016)
[22] Kinney, Nicholas Allen; Sharakhov, Igor V.; Onufriev, Alexey V., Chromosome-nuclear envelope attachments affect interphase chromosome territories and entanglement, Epigenet. Chromatin, 11, 1, 1-18 (2018)
[23] Laghmach, Rabia; Di Pierro, Michele; Potoyan, Davit A., Mesoscale liquid model of chromatin recapitulates nuclear order of eukaryotes, Biophys. J., 118, 9, 2130-2140 (2020)
[24] Lee, S. Seirin; Tashiro, S.; Awazu, A.; Kobayashi, R., A new application of the phase-field method for understanding the mechanisms of nuclear architecture reorganization, J. Math. Biol., 74, 1-2, 333-354 (2017) · Zbl 1357.92031
[25] Liu, Chun; Shen, Jie, A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method, Physica D Nonlinear Phenom., 179, 3-4, 211-228 (2003) · Zbl 1092.76069
[26] Mao, Xiaoyu; Joshi, Vaibhav; Jaiman, Rajeev, A variational interface-preserving and conservative phase-field method for the surface tension effect in two-phase flows, J. Comput. Phys., 433, Article 110166 pp. (2021) · Zbl 1515.76099
[27] Paulsen, Jonas; Sekelja, Monika; Oldenburg, Anja R.; Barateau, Alice; Briand, Nolwenn; Delbarre, Erwan; Shah, Akshay; Sørensen, Anita L.; Vigouroux, Corinne; Buendia, Brigitte, Chrom3d: three-dimensional genome modeling from hi-c and nuclear lamin-genome contacts, Genome Biol., 18, 1, 1-15 (2017)
[28] Perez-Rathke, Alan; Sun, Qiu; Wang, Boshen; Boeva, Valentina; Shao, Zhifeng; Liang, Jie, Chromatix: computing the functional landscape of many-body chromatin interactions in transcriptionally active loci from deconvolved single cells, Genome Biol., 21, 1, 1-17 (2020)
[29] Provatas, Nikolas; Elder, Ken, Phase-Field Methods in Materials Science and Engineering (2011), John Wiley & Sons
[30] Seirin-Lee, Sungrim, Role of domain in pattern formation, Dev. Growth Differ., 59, 5, 396-404 (2017)
[31] Solovei, Irina; Kreysing, Moritz; Lanctôt, Christian; Kösem, Süleyman; Peichl, Leo; Cremer, Thomas; Guck, Jochen; Joffe, Boris, Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution, Cell, 137, 2, 356-368 (2009)
[32] Solovei, Irina; Wang, Audrey S.; Thanisch, Katharina; Schmidt, Christine S.; Krebs, Stefan; Zwerger, Monika; Cohen, Tatiana V.; Devys, Didier; Foisner, Roland; Peichl, Leo, LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation, Cell, 152, 3, 584-598 (2013)
[33] Strom, Amy R.; Emelyanov, Alexander V.; Mir, Mustafa; Fyodorov, Dmitry V.; Darzacq, Xavier; Karpen, Gary H., Phase separation drives heterochromatin domain formation, Nature, 547, 7662, 241-245 (2017)
[34] Sun, Qiu; Perez-Rathke, Alan; Czajkowsky, Daniel M.; Shao, Zhifeng; Liang, Jie, High-resolution single-cell 3D-models of chromatin ensembles during drosophila embryogenesis, Nat. Commun., 12, 1, 1-12 (2021)
[35] Sun, Shouwen; Li, Jun; Zhao, Jia; Wang, Qi, Structure-preserving numerical approximations to a non-isothermal hydrodynamic model of binary fluid flows, J. Sci. Comput., 83, 1-43 (2020) · Zbl 1440.35278
[36] Van Steensel, Bas; Belmont, Andrew S., Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression, Cell, 169, 5, 780-791 (2017)
[37] Wang, Xiaoqiang; Ju, Lili; Du, Qiang, Efficient and stable exponential time differencing Runge-Kutta methods for phase field elastic bending energy models, J. Comput. Phys., 316, 21-38 (2016) · Zbl 1349.92015
[38] Yang, Xiaofeng, Numerical approximations of the Navier-Stokes equation coupled with volume-conserved multi-phase-field vesicles system: fully-decoupled, linear, unconditionally energy stable and second-order time-accurate numerical scheme, Comput. Methods Appl. Mech. Eng., 375, Article 113600 pp. (2021) · Zbl 1506.76105
[39] Yang, Xiaofeng; Ju, Lili, Efficient linear schemes with unconditional energy stability for the phase field elastic bending energy model, Comput. Methods Appl. Mech. Eng., 315, 691-712 (2017) · Zbl 1439.74165
[40] Zhao, Jia; Wang, Qi, A 3D multi-phase hydrodynamic model for cytokinesis of eukaryotic cells, Commun. Comput. Phys., 19, 3, 663-681 (2016) · Zbl 1373.92036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.